当前位置: X-MOL 学术Eur. J. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanobiology of the brain in ageing and Alzheimer's disease
European Journal of Neuroscience ( IF 2.7 ) Pub Date : 2020-04-30 , DOI: 10.1111/ejn.14766
Chloe M Hall 1, 2 , Emad Moeendarbary 1, 3 , Graham K Sheridan 4
Affiliation  

Just as the epigenome, the proteome and the electrophysiological properties of a cell influence its function, so too do its intrinsic mechanical properties and its extrinsic mechanical environment. This is especially true for neurons of the central nervous system (CNS) as long-term maintenance of synaptic connections relies on efficient axonal transport machinery and structural stability of the cytoskeleton. Recent reports suggest that profound physical changes occur in the CNS microenvironment with advancing age which, in turn, will impact highly mechanoresponsive neurons and glial cells. Here, we discuss the complex and inhomogeneous mechanical structure of CNS tissue, as revealed by recent mechanical measurements on the brain and spinal cord, using techniques such as magnetic resonance elastography and atomic force microscopy. Moreover, ageing, traumatic brain injury, demyelination and neurodegeneration can perturb the mechanical properties of brain tissue and trigger mechanobiological signalling pathways in neurons, glia and cerebral vasculature. It is, therefore, very likely that significant changes in cell and tissue mechanics contribute to age-related cognitive decline and deficits in memory formation which are accelerated and magnified in neurodegenerative states, such as Alzheimer's disease. Importantly, we are now beginning to understand how neuronal and glial cell mechanics and brain tissue mechanobiology are intimately linked with neurophysiology and cognition.

中文翻译:

大脑在衰老和阿尔茨海默病中的力学生物学

正如表观基因组、蛋白质组和细胞的电生理特性会影响其功能一样,其内在机械特性和外在机械环境也会影响其功能。对于中枢神经系统 (CNS) 的神经元尤其如此,因为突触连接的长期维持依赖于有效的轴突运输机制和细胞骨架的结构稳定性。最近的报告表明,随着年龄的增长,中枢神经系统微环境会发生深刻的物理变化,这反过来又会影响高度机械响应的神经元和神经胶质细胞。在这里,我们讨论了中枢神经系统组织的复杂和不均匀的机械结构,正如最近对大脑和脊髓的机械测量所揭示的那样,使用磁共振弹性成像和原子力显微镜等技术。此外,衰老,创伤性脑损伤、脱髓鞘和神经变性会扰乱脑组织的机械特性,并触发神经元、神经胶质和脑血管系统的机械生物学信号通路。因此,细胞和组织力学的显着变化很可能导致与年龄相关的认知能力下降和记忆形成缺陷,这些在神经退行性疾病(如阿尔茨海默病)中会加速和放大。重要的是,我们现在开始了解神经元和神经胶质细胞力学以及脑组织力学生物学如何与神经生理学和认知密切相关。因此,细胞和组织力学的显着变化很可能导致与年龄相关的认知能力下降和记忆形成缺陷,这些在神经退行性疾病(如阿尔茨海默病)中会加速和放大。重要的是,我们现在开始了解神经元和神经胶质细胞力学以及脑组织力学生物学如何与神经生理学和认知密切相关。因此,细胞和组织力学的显着变化很可能导致与年龄相关的认知能力下降和记忆形成缺陷,这些在神经退行性疾病(如阿尔茨海默病)中会加速和放大。重要的是,我们现在开始了解神经元和神经胶质细胞力学以及脑组织力学生物学如何与神经生理学和认知密切相关。
更新日期:2020-04-30
down
wechat
bug