当前位置: X-MOL 学术Steel Res. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Continuous Casting Secondary Cooling: Laboratory Heat Transfer Measurements and Accuracy Considerations by Comparison with the Real Situation
Steel Research International ( IF 2.2 ) Pub Date : 2020-03-24 , DOI: 10.1002/srin.202000052
Mirko Javurek 1 , Andreas Mittermair 2
Affiliation  

In secondary cooling of continuous casting, it is very important to know the cooling heat flux for the actual spray cooling situation with respect to various parameters like the local position, the nozzle types, distances, and the water and air flow rates, to be able to control the cooling conditions precisely. As heat flux measurements on a casting machine are too challenging, experimental laboratory test rigs are designed and used for measurements by different research groups. Therefore, metal probes of different dimensions and materials are heated up to the desired temperature and then exposed to spray nozzles. The heat flux is usually measured by temperature sensors immersed in the probe body, and then determined from the measured temperature using inverse modelling methods. Herein, the differences between the real and laboratory conditions are focused on using a mathematical heat transfer simulation model. The influence of strand surface temperature, nozzle spray water flow conditions, and Leidenfrost effect are pointed out. A procedure to use heatflux data measured on a test rig for cooling control on a real caster despite the different conditions is proposed.

中文翻译:

连铸二次冷却:实验室传热测量和与实际情况比较的精度考虑

在连续铸造的二次冷却中,了解与各种参数(例如局部位置,喷嘴类型,距离以及水和空气流速)有关的实际喷雾冷却情况的冷却热通量非常重要。以精确控制冷却条件。由于在铸造机上进行热通量测量非常具有挑战性,因此设计了实验实验室试验台,并由不同的研究小组用于测量。因此,将不同尺寸和材料的金属探针加热到所需温度,然后将其暴露在喷嘴中。通常通过浸入探头主体中的温度传感器来测量热通量,然后使用逆建模方法根据测量的温度来确定热通量。在这里 实际条件与实验室条件之间的差异集中在使用数学传热模拟模型上。指出了钢绞线表面温度,喷嘴喷雾水流动条件和莱顿弗罗斯特效应的影响。提出了一种使用试验台上测得的热通量数据进行实际脚轮冷却控制的程序,尽管条件不同。
更新日期:2020-03-24
down
wechat
bug