当前位置: X-MOL 学术Int. J. Numer. Methods Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spring‐network model of red blood cell: From membrane mechanics to validation
International Journal for Numerical Methods in Fluids ( IF 1.8 ) Pub Date : 2020-04-07 , DOI: 10.1002/fld.4832
Iveta Jančigová 1 , Kristína Kovalčíková 1 , Alžbeta Bohiniková 1 , Ivan Cimrák 1
Affiliation  

Red blood cell membrane is highly elastic and proper modeling of this elasticity is essential for biomedical applications that involve computational experiments with blood flow. Inseparable and often some of the most difficult parts of modeling process are verification and validation. In this work, we present a revised model, which uses a spring network to represent the cell membrane immersed in a fluid and has been successfully used in blood flow simulations. We demonstrate the validation steps by first deriving the theoretical relations between the bulk properties of elastic membranes—shear modulus and area compressibility modulus—and parameters of the model that enter the nonlinear stretching and local area conservation computational moduli. We verify the theoretically derived relations using computer simulations of deformable triangular mesh. We calibrate the model by performing a computational version of the optical tweezers experiment. And finally, we validate the modeled cell behavior by investigating the cell rotation frequency when it is subjected to shear flow and cell deformation in narrow channels. The supplementary material contains an extensive dataset that can be used for setting different elastic properties for each cell in simulations of dense suspensions, while still conforming to the biological data. This work contains a complete model development process: From modelling of basic mechanical concepts (the spring network) and advanced biomechanical concepts (such as elasticity of the membrane), through calibration process towards the final stage of model validation.

中文翻译:

红细胞的弹簧网络模型:从膜力学到验证

红细胞膜具有很高的弹性,因此这种弹性的正确建模对于涉及涉及血流计算实验的生物医学应用至关重要。验证和确认是建模过程中不可分割的部分,通常是一些最困难的部分。在这项工作中,我们提出了一种改进的模型,该模型使用弹簧网络来代表浸没在流体中的细胞膜,并已成功地用于血流模拟中。我们首先通过推导弹性膜的体积特性(剪切模量和面积可压缩模量)与进入非线性拉伸和局部守恒计算模量的模型参数之间的理论关系来演示验证步骤。我们使用可变形三角形网格的计算机仿真来验证理论上得出的关系。我们通过执行光镊实验的计算版本来校准模型。最后,我们通过研究在狭窄通道中受到剪切流和细胞变形时的细胞旋转频率来验证建模的细胞行为。补充材料包含一个广泛的数据集,可用于在密集悬浮液的模拟中为每个细胞设置不同的弹性,同时仍符合生物学数据。这项工作包含完整的模型开发过程:从基本的机械概念(弹簧网络)和高级生物力学概念(例如膜的弹性)建模到校准的最后阶段,再到校准过程。我们通过研究在狭窄通道中受到剪切流和细胞变形影响时的细胞旋转频率来验证建模的细胞行为。补充材料包含一个广泛的数据集,可用于在密集悬浮液的模拟中为每个细胞设置不同的弹性,同时仍符合生物学数据。这项工作包含完整的模型开发过程:从基本的机械概念(弹簧网络)和高级生物力学概念(例如膜的弹性)建模到校准的最后阶段,再到校准过程。我们通过研究在狭窄通道中受到剪切流和细胞变形影响时的细胞旋转频率来验证建模的细胞行为。补充材料包含一个广泛的数据集,可用于在密集悬浮液的模拟中为每个细胞设置不同的弹性,同时仍符合生物学数据。这项工作包含完整的模型开发过程:从基本的机械概念(弹簧网络)和高级生物力学概念(例如膜的弹性)建模到校准的最后阶段,再到校准过程。补充材料包含一个广泛的数据集,可用于在密集悬浮液的模拟中为每个细胞设置不同的弹性,同时仍符合生物学数据。这项工作包含完整的模型开发过程:从基本的机械概念(弹簧网络)和高级生物力学概念(例如膜的弹性)建模到校准的最后阶段,再到校准过程。补充材料包含一个广泛的数据集,可用于在密集悬浮液的模拟中为每个细胞设置不同的弹性,同时仍符合生物学数据。这项工作包含完整的模型开发过程:从基本的机械概念(弹簧网络)和高级生物力学概念(例如膜的弹性)建模到校准的最后阶段,再到校准过程。
更新日期:2020-04-07
down
wechat
bug