当前位置: X-MOL 学术Microsyst. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of polyimide microfluidic devices by laser ablation based additive manufacturing
Microsystem Technologies ( IF 1.6 ) Pub Date : 2019-11-26 , DOI: 10.1007/s00542-019-04698-4
Xingjian Hu , Fan Yang , Mingzhao Guo , Jiayun Pei , Haiyan Zhao , Yujun Wang

Polyimide microfluidic devices (MFDs) have been attached enormous significance because of its excellent organic-solvent inertness, biocompatibility, and thermal stability. In this paper, a novel fabrication method based on the thought of additive manufacturing, which is adding materials layer by layer from bottom to top, was used to construct a multilayer polyimide MFD. The MFD has sophisticated three-dimensional (3D) microchannels with adjustable cross-sectional geometries and high bonding strength, which leads to good reagent mixing performance, large surface-to-volume ratio, and great durability. Starting from a single polyimide film, ultraviolet (UV) laser was utilized to ablate microchannels on the film. Due to the studies over the influence of UV laser on the channel width, the microchannel edge shape is under control, varying from trapezoid to rectangle. From monolayer to multilayer MFDs, thermal bonding with fluorinated ethylene propylene (FEP) nanoparticle dispersion as the adhesive was adopted to stack polyimide films tightly with precise alignment. In this way, microchannels can be connected vertically between layers to form 3D structures. Besides, a homogeneous adhesive interlayer and polyimide-FEP mixing regime were formed, which can provide high bonding strength. Results of computational fluid dynamics simulation of 3D microchannel structures and organic synthesis experiment revealed that our device has great reagent mixing efficiency and promising application prospects in diverse research fields, especially organic chemical and biological studies.



中文翻译:

通过基于激光烧蚀的增材制造技术来制造聚酰亚胺微流体装置

聚酰亚胺微流体装置(MFD)由于其优异的有机溶剂惰性,生物相容性和热稳定性而受到了极大的重视。本文采用一种基于增材制造思想的新颖制造方法,即从下到上逐层添加材料,以构建多层聚酰亚胺MFD。MFD具有复杂的三维(3D)微通道,具有可调整的横截面几何形状和较高的结合强度,从而导致良好的试剂混合性能,大的体积比和出色的耐用性。从单个聚酰亚胺薄膜开始,利用紫外线(UV)激光烧蚀薄膜上的微通道。由于研究了紫外激光对通道宽度的影响,微通道边缘形状处于可控状态,从梯形到矩形不等。从单层MFD到多层MFD,采用氟化乙烯丙烯(FEP)纳米颗粒分散体作为粘合剂进行热粘合,以精确对准的方式紧密堆叠聚酰亚胺薄膜。这样,微通道可以在层之间垂直连接以形成3D结构。此外,形成了均匀的粘合剂夹层和聚酰亚胺-FEP混合方案,可以提供较高的粘结强度。3D微通道结构的计算流体动力学模拟和有机合成实验的结果表明,我们的设备具有很高的试剂混合效率,并且在各种研究领域,特别是有机化学和生物学研究中具有广阔的应用前景。采用氟化乙烯丙烯(FEP)纳米颗粒分散体作为粘合剂进行热粘合,以精确对准的方式紧密堆叠聚酰亚胺薄膜。这样,微通道可以在层之间垂直连接以形成3D结构。此外,形成了均匀的粘合剂夹层和聚酰亚胺-FEP混合方案,可以提供较高的粘结强度。3D微通道结构的计算流体动力学模拟和有机合成实验的结果表明,我们的设备具有很高的试剂混合效率,并且在各种研究领域,特别是有机化学和生物学研究中具有广阔的应用前景。采用氟化乙烯丙烯(FEP)纳米颗粒分散体作为粘合剂进行热粘合,以精确对准的方式紧密堆叠聚酰亚胺薄膜。这样,微通道可以在层之间垂直连接以形成3D结构。此外,形成了均匀的粘合剂夹层和聚酰亚胺-FEP混合方案,可以提供较高的粘结强度。3D微通道结构的计算流体动力学模拟和有机合成实验的结果表明,我们的设备具有很高的试剂混合效率,并且在各种研究领域,特别是有机化学和生物学研究中具有广阔的应用前景。微通道可以在层之间垂直连接以形成3D结构。此外,形成了均匀的粘合剂夹层和聚酰亚胺-FEP混合方案,可以提供较高的粘结强度。3D微通道结构的计算流体动力学模拟和有机合成实验的结果表明,我们的设备具有很高的试剂混合效率,并且在各种研究领域,特别是有机化学和生物学研究中具有广阔的应用前景。微通道可以在层之间垂直连接以形成3D结构。此外,形成了均匀的粘合剂夹层和聚酰亚胺-FEP混合方案,可以提供较高的粘结强度。3D微通道结构的计算流体动力学模拟和有机合成实验的结果表明,我们的设备具有很高的试剂混合效率,并且在各种研究领域,特别是有机化学和生物学研究中具有广阔的应用前景。

更新日期:2019-11-26
down
wechat
bug