当前位置: X-MOL 学术Euphytica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Patterns of inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus
Euphytica ( IF 1.6 ) Pub Date : 2020-04-25 , DOI: 10.1007/s10681-020-02612-y
Muhammad Azam Khan , Wallace Cowling , Surinder Singh Banga , Ming Pei You , Vikrant Tyagi , Baudh Bharti , Martin J. Barbetti

Sclerotinia rot, caused by the fungal pathogen Sclerotinia sclerotiorum, is a devastating disease on oilseed rape and mustard worldwide. While the focus to effectively control yield losses from Sclerotinia has been on locating stem resistance, resistance to leaf and to early (cotyledon) stage resistance to this pathogen are also important, both not only limiting additional plant damage, but also inoculum build up and spread onto stems. Three Brassica napus breeding populations developed in India, C2 (NC-8 × RQ-001-NCA-8 NC2-7), C5 (cv. Charlton × RQ-001-NCA-8 NC2-7) and C6 (cv. Charlton × NC4-5), were screened for cotyledon resistance (based on lesion diameter) under controlled environmental conditions to investigate the inheritance of disease resistance. Each population consisted of parents (P1 and P2), F1, F2, BC1P1 and BC2P2, except for population C5 which lacked BC1P1. Moderate broad sense heritability of 0.42, 0.31 and 0.49 for cotyledon resistance was found in populations C2, C5 and C6, respectively, and there was mostly non-additive genetic control of resistance. Analyses of generation means and variances indicated that the additive-dominance model was adequate to explain genetics of cotyledon resistance in population C2. There was heterosis for susceptibility (i.e., larger lesion diameter). The dominance × dominance digenic epistasis explained genetic control in population C6, with heterosis towards resistance (i.e., smaller lesion diameter). This information is critical for breeding for resistance to this important pathogen in Australia, India and elsewhere.

中文翻译:

油菜子叶对核盘菌的抗性遗传模式

核盘菌腐烂由真菌病原体核盘菌引起,是世界范围内油菜和芥菜的毁灭性疾病。虽然有效控制核盘菌产量损失的重点是定位茎抗性,但对叶的抗性和对这种病原体的早期(子叶)阶段的抗性也很重要,不仅限制了额外的植物损伤,而且还限制了接种物的积累和传播到茎上。在印度开发的三个甘蓝型油菜育种群体,C2 (NC-8 × RQ-001-NCA-8 NC2-7)、C5 (cv. Charlton × RQ-001-NCA-8 NC2-7) 和 C6 (cv. Charlton) × NC4-5),在受控环境条件下筛选子叶抗性(基于病灶直径)以研究抗病性的遗传。每个种群由父母(P1 和 P2)、F1、F2、BC1P1 和 BC2P2 组成,除了缺乏 BC1P1 的群体 C5。C2、C5和C6群体中子叶抗性的广义遗传力分别为0.42、0.31和0.49,且抗性多为非加性遗传控制。世代均值和方差分析表明,加性优势模型足以解释种群 C2 中子叶抗性的遗传学。易感性存在杂种优势(即病灶直径较大)。优势×优势双基因上位性解释了群体 C6 中的遗传控制,具有抗性的杂种优势(即较小的病灶直径)。这些信息对于在澳大利亚、印度和其他地方培育对这种重要病原体的抗性至关重要。在C2、C5和C6群体中分别发现子叶抗性49,且抗性多为非加性遗传控制。世代均值和方差分析表明,加性优势模型足以解释种群 C2 中子叶抗性的遗传学。易感性存在杂种优势(即病灶直径较大)。优势×优势双基因上位性解释了群体 C6 中的遗传控制,具有抗性的杂种优势(即较小的病灶直径)。这些信息对于在澳大利亚、印度和其他地方培育对这种重要病原体的抗性至关重要。在C2、C5和C6群体中分别发现子叶抗性49,且抗性多为非加性遗传控制。世代均值和方差分析表明,加性优势模型足以解释种群 C2 中子叶抗性的遗传学。易感性存在杂种优势(即病灶直径较大)。优势×优势双基因上位性解释了群体 C6 中的遗传控制,具有抗性的杂种优势(即较小的病灶直径)。这些信息对于在澳大利亚、印度和其他地方培育对这种重要病原体的抗性至关重要。世代均值和方差分析表明,加性优势模型足以解释种群 C2 中子叶抗性的遗传学。易感性存在杂种优势(即病灶直径较大)。优势×优势双基因上位性解释了群体 C6 中的遗传控制,具有抗性的杂种优势(即较小的病灶直径)。这些信息对于在澳大利亚、印度和其他地方培育对这种重要病原体的抗性至关重要。世代均值和方差分析表明,加性优势模型足以解释种群 C2 中子叶抗性的遗传学。易感性存在杂种优势(即病灶直径较大)。优势×优势双基因上位性解释了群体 C6 中的遗传控制,具有抗性的杂种优势(即较小的病灶直径)。这些信息对于在澳大利亚、印度和其他地方培育对这种重要病原体的抗性至关重要。
更新日期:2020-04-25
down
wechat
bug