当前位置: X-MOL 学术Plant Signal Behav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synchronization of photoperiod and temperature signals during plant thermomorphogenesis
Plant Signaling & Behavior ( IF 2.8 ) Pub Date : 2020-03-12 , DOI: 10.1080/15592324.2020.1739842
Young-Joon Park 1 , June-Hee Lee 1 , Jae Young Kim 1 , Chung-Mo Park 1, 2
Affiliation  

ABSTRACT It is well-known that even small changes in ambient temperatures by a few degrees profoundly affect plant growth and morphology. This architectural property is intimately associated with global warming. In particular, under warm temperature conditions, plants exhibit distinct morphological changes, such as elongation of hypocotyls and leaf petioles, formation of small, thin leaves, and leaf hyponasty that describes an upward bending of leaf petioles. These thermoresponsive morphological adjustments are termed thermomorphogenesis. Under warm temperature conditions, the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) transcription factor is thermoactivated and stimulates the transcription of the YUCCA8 gene encoding an auxin biosynthetic enzyme, promoting hypocotyl elongation. Notably, these thermomorphogenic growth is influenced by daylength or photoperiod, displaying relatively high and low thermomorphogenic hypocotyl growth during the nighttime under short days and long days, respectively. We have recently reported that the photoperiod signaling regulator GIGANTEA (GI) thermostabilizes the REPRESSOR OF ga1-3 transcription factor, which is known to attenuate the PIF4-mediated thermomorphogenesis. We also found that the N-terminal domain of GI interacts with PIF4, possibly destabilizing the PIF4 proteins. We propose that the GI-mediated shaping of photoperiodic rhythms of hypocotyl thermomorphogenesis helps plant adapt to fluctuations in daylength and temperature environments occurring during seasonal transitions.

中文翻译:

植物热形态发生过程中光周期和温度信号的同步

摘要 众所周知,即使环境温度发生几度的微小变化,也会对植物的生长和形态产生深远的影响。这种建筑特性与全球变暖密切相关。特别是,在温暖的温度条件下,植物表现出明显的形态变化,例如下胚轴和叶柄的伸长,形成小而薄的叶子,以及描述叶柄向上弯曲的叶片低矮。这些热响应形态调整被称为热形态发生。在温暖的温度条件下,PHYTOCHROME INTERACTING FACTOR 4 (PIF4) 转录因子被热激活并刺激编码生长素生物合成酶的 YUCCA8 基因的转录,促进下胚轴伸长。尤其,这些产热生长受日长或光周期的影响,分别在短日和长日下的夜间显示相对较高和较低的产热下胚轴生长。我们最近报道了光周期信号调节剂 GIGANTEA (GI) 热稳定 ga1-3 转录因子的阻遏物,已知它会减弱 PIF4 介导的热形态发生。我们还发现 GI 的 N 端结构域与 PIF4 相互作用,可能会破坏 PIF4 蛋白的稳定性。我们提出,GI 介导的下胚轴热形态发生光周期节律的塑造有助于植物适应季节性转变期间发生的日长和温度环境的波动。分别在短日和长日的夜间显示相对较高和较低的产热下胚轴生长。我们最近报道了光周期信号调节剂 GIGANTEA (GI) 热稳定 ga1-3 转录因子的阻遏物,已知它会减弱 PIF4 介导的热形态发生。我们还发现 GI 的 N 端结构域与 PIF4 相互作用,可能会破坏 PIF4 蛋白的稳定性。我们提出,GI 介导的下胚轴热形态发生光周期节律的塑造有助于植物适应季节性转变期间发生的日长和温度环境的波动。分别在短日和长日下的夜间显示相对较高和较低的产热下胚轴生长。我们最近报道了光周期信号调节剂 GIGANTEA (GI) 热稳定 ga1-3 转录因子的阻遏物,已知它会减弱 PIF4 介导的热形态发生。我们还发现 GI 的 N 端结构域与 PIF4 相互作用,可能会破坏 PIF4 蛋白的稳定性。我们提出,GI 介导的下胚轴热形态发生光周期节律的塑造有助于植物适应季节性转变期间发生的日长和温度环境的波动。众所周知,它会减弱 PIF4 介导的热形态发生。我们还发现 GI 的 N 端结构域与 PIF4 相互作用,可能会破坏 PIF4 蛋白的稳定性。我们提出,GI 介导的下胚轴热形态发生光周期节律的塑造有助于植物适应季节性转变期间发生的日长和温度环境的波动。众所周知,它会减弱 PIF4 介导的热形态发生。我们还发现 GI 的 N 端结构域与 PIF4 相互作用,可能会破坏 PIF4 蛋白的稳定性。我们提出,GI 介导的下胚轴热形态发生光周期节律的塑造有助于植物适应季节性转变期间发生的日长和温度环境的波动。
更新日期:2020-03-12
down
wechat
bug