当前位置: X-MOL 学术J. Volcanol. Geotherm. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Volatile transport of metals and the Cu budget of the active White Island magmatic-hydrothermal system, New Zealand
Journal of Volcanology and Geothermal Research ( IF 2.4 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.jvolgeores.2020.106905
Céline L. Mandon , Terry M. Seward , Bruce W. Christenson

Abstract Evidence of metal transport by volcanic gases is found, amongst others, in volcanic plumes and sublimates growing around fumaroles. The transport mechanisms (i.e. volatile metal compounds) are, however, not well constrained. Here, we present results on the volatile transport of metals at the scale of a magmatic-hydrothermal system, White Island volcano. We studied metal emissions from the main vent through the crater lake covering the conduit. Volcanic gases injected in the lake are responsible for the waters and sediments enrichment in various metals, while elemental sulfur forming at the bottom appears as the main sink for chalcophile metals. Metal chloride complexes are the dominant species in the hot and acidic crater lake waters. Nearby low-temperature fumarolic gases are lower in metals than higher temperature gases reported in the 1970s, emphasizing precipitation at depth and sequestration by condensing elemental sulfur. Efficient gaseous transport of metals by HCl and HBr is revealed by thermodynamic modeling, whereas the role of sulfur is restrained to controlling redox conditions. A copper budget for White Island magmatic-hydrothermal system is assessed, taking into consideration all the potentials sinks. About 3900 tons of copper are estimated to be retained in the subsurface environment every year. Over the 10,000 years lifetime of the magmatic-hydrothermal system, this adds up to ~40 megatons, depicting White Island as a potential Cu porphyry forming deposit.

中文翻译:

新西兰活跃的怀特岛岩浆热液系统的金属挥发性输运和铜收支

摘要 在火山羽流和喷气孔周围生长的升华物中发现了火山气体运输金属的证据。然而,传输机制(即挥发性金属化合物)并没有受到很好的限制。在这里,我们展示了在岩浆-热液系统怀特岛火山范围内金属挥发性输运的结果。我们研究了从主通风口穿过覆盖管道的火山口湖的金属排放。注入湖中的火山气体导致水和沉积物中各种金属的富集,而在底部形成的元素硫似乎是亲硫金属的主要汇。金属氯化物络合物是热酸性火山口湖水中的优势物种。附近的低温富马酸气体的金属含量低于 1970 年代报道的高温气体,强调深度沉淀和通过冷凝元素硫进行封存。热力学模型揭示了 HCl 和 HBr 对金属的有效气态传输,而硫的作用仅限于控制氧化还原条件。评估了怀特岛岩浆热液系统的铜预算,同时考虑了所有潜在的汇。据估计,每年约有 3900 吨铜保留在地下环境中。在岩浆-热液系统 10,000 年的生命周期中,这加起来可达约 40 兆吨,将怀特岛描述为潜在的铜斑岩形成矿床。热力学模型揭示了 HCl 和 HBr 对金属的有效气态传输,而硫的作用仅限于控制氧化还原条件。评估了怀特岛岩浆热液系统的铜预算,同时考虑了所有潜在的汇。据估计,每年约有 3900 吨铜保留在地下环境中。在岩浆-热液系统 10,000 年的生命周期中,这加起来可达约 40 兆吨,将怀特岛描述为潜在的铜斑岩形成矿床。热力学模型揭示了 HCl 和 HBr 对金属的有效气态传输,而硫的作用仅限于控制氧化还原条件。评估了怀特岛岩浆热液系统的铜预算,同时考虑了所有潜在的汇。据估计,每年约有 3900 吨铜保留在地下环境中。在岩浆-热液系统 10,000 年的生命周期中,这加起来可达约 40 兆吨,将怀特岛描述为潜在的铜斑岩形成矿床。据估计,每年约有 3900 吨铜保留在地下环境中。在岩浆-热液系统 10,000 年的生命周期中,这加起来可达约 40 兆吨,将怀特岛描述为潜在的铜斑岩形成矿床。据估计,每年约有 3900 吨铜保留在地下环境中。在岩浆-热液系统 10,000 年的生命周期中,这加起来可达约 40 兆吨,将怀特岛描述为潜在的铜斑岩形成矿床。
更新日期:2020-06-01
down
wechat
bug