当前位置: X-MOL 学术Adv. Eng. Softw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programming a micro-mechanical model of granular materials in Julia
Advances in Engineering Software ( IF 4.0 ) Pub Date : 2020-04-30 , DOI: 10.1016/j.advengsoft.2020.102816
Hao Xiong , Zhen-Yu Yin , François Nicot

Modelling the mechanical behaviour of granular materials using the insight of physics, such as discrete element method (DEM), usually costs a lot of computing resources as a result of the storing and transferring of a large amount of particle and contact information. Unlike DEM, the micro-mechanical (MM) model, based on statistics of directional inter-particle contacts of a representative volume of an element, imposes a much lower computational demand while retaining granular physics. This paper presents such a kinematic hypothesis-based MM modelling framework, programmed by a dynamic coding language, Julia. The directional local law of a recently developed model is selected as an example of the implementation. The entire code of the MM model programmed by Julia is structured into several functions by which multilevel loops are called in an order. Moreover, a global mixed-loading control method is proposed in this study by which the stress control and strain control can be achieved simultaneously. Using this method, conventional triaxial tests and proportional strain tests are simulated to calibrate the model according to experimental data. The same experiments are also simulated by DEM for comparison with the MM model to estimate the computational efficiency and accuracy, which demonstrates a significant advantage of the MM model. This study can be directly used for modelling other materials by changing the directional local law and provides helpful guidance for programming of similar multiscale approaches.



中文翻译:

在Julia中编写颗粒材料的微机械模型

利用物理知识(例如离散元素方法(DEM))对粒状材料的机械行为进行建模,由于存储和传输了大量粒子和接触信息,因此通常会花费大量计算资源。与DEM不同的是,微机械(MM)模型基于元素的代表性体积的定向粒子间接触的统计信息,在保留颗粒物理的同时,对计算的要求低得多。本文提出了一种基于运动学假设的MM建模框架,该框架由动态编码语言Julia编写。选择最近开发的模型的定向局部定律作为实施示例。Julia编写的MM模型的整个代码被构造为多个函数,通过这些函数可以按顺序调用多级循环。此外,本研究提出了一种全局混合荷载控制方法,通过该方法可以同时实现应力控制和应变控制。使用这种方法,可以模拟常规的三轴试验和比例应变试验,以根据实验数据校准模型。DEM还模拟了相同的实验,以与MM模型进行比较以估算计算效率和准确性,这证明了MM模型的显着优势。这项研究可通过更改方向性当地法律直接用于建模其他材料,并为类似多尺度方法的编程提供有用的指导。模拟了传统的三轴试验和比例应变试验,以根据实验数据校准模型。DEM还模拟了相同的实验,以与MM模型进行比较以估计计算效率和准确性,这证明了MM模型的显着优势。这项研究可通过更改方向性当地法律直接用于建模其他材料,并为类似多尺度方法的编程提供有用的指导。模拟了传统的三轴试验和比例应变试验,以根据实验数据校准模型。DEM还模拟了相同的实验,以与MM模型进行比较以估算计算效率和准确性,这证明了MM模型的显着优势。这项研究可通过更改方向性当地法律直接用于建模其他材料,并为类似多尺度方法的编程提供有用的指导。

更新日期:2020-04-30
down
wechat
bug