当前位置: X-MOL 学术J. Forecast. › 论文详情
Cholesky–ANN models for predicting multivariate realized volatility
Journal of Forecasting ( IF 1.570 ) Pub Date : 2020-02-17 , DOI: 10.1002/for.2664
Andrea Bucci

Accurately forecasting multivariate volatility plays a crucial role for the financial industry. The Cholesky–artificial neural networks specification here presented provides a twofold advantage for this topic. On the one hand, the use of the Cholesky decomposition ensures positive definite forecasts. On the other hand, the implementation of artificial neural networks allows us to specify nonlinear relations without any particular distributional assumption. Out‐of‐sample comparisons reveal that artificial neural networks are not able to strongly outperform the competing models. However, long‐memory detecting networks, like nonlinear autoregressive model process with exogenous input and long short‐term memory, show improved forecast accuracy with respect to existing econometric models.
更新日期:2020-02-17

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug