当前位置: X-MOL 学术J. Vinyl Addit. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural, electrical, thermal, and gas sensing properties of new conductive blend nanocomposites based on polypyrrole/phenothiazine/silver‐doped zinc oxide
Journal of Vinyl and Additive Technology ( IF 2.7 ) Pub Date : 2019-08-15 , DOI: 10.1002/vnl.21732
M. T. Ramesan 1 , K. P. Greeshma 1 , K. Parvathi 1 , T. Anilkumar 1
Affiliation  

The main aim of this study is to investigate the effect of silver‐doped zinc oxide (Ag‐ZnO) loading on the structural, morphological, thermal and electrical properties, and gas sensing behavior of polypyrrole (PPy)/phenothiazine (PTZ)‐blend nanocomposites. The composites are characterized by FTIR, XRD, SEM, TEM, DSC, TGA, and impedance studies. FTIR spectra exhibit the presence of Ag‐ZnO in the PPy/PTZ blend. XRD analysis shows that the semicrystalline behavior of the polymer blend is greatly enhanced by the addition of Ag‐doped ZnO particles. Uniform dispersion of nanoparticles in the polymer is obtained from SEM analysis. The TEM images confirm the presence of spherically shaped nanoparticles in PPy/PTZ blend with a size of 10–25 nm. The DSC measurement indicates that the glass transition temperature of PPy/PTZ blend was significantly improved in the presence of Ag‐doped ZnO nanoparticles. The thermal decomposition temperature of nanocomposite obtained from TGA shows an increase with increase in the content of Ag‐ZnO particles. The incorporation of Ag‐doped ZnO nanoparticles to PPy/PTZ blend exhibit increase in the AC conductivity and dielectric properties of the nanocomposite, due to the pilling of charges at the extended interface of the composite system. The DC conductivity of the nanocomposite increases with the loading of nanoparticles. The ammonia gas sensing performance of PPy/PTZ/Ag‐ZnO nanocomposite is analyzed, and the result shows that the fabricated blend composite can be used as a promising candidate for the easy access of gas molecules. J. VINYL ADDIT. TECHNOL., 26:187–195, 2020. © 2019 The Authors. Journal of Vinyl and Additive Technology published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers.

中文翻译:

基于聚吡咯/吩噻嗪/银掺杂氧化锌的新型导电共混纳米复合材料的结构,电,热和气体传感性能

本研究的主要目的是研究掺杂银的氧化锌(Ag-ZnO)对聚吡咯(PPy)/吩噻嗪(PTZ)-共混物的结构,形态,热和电性能以及气敏行为的影响纳米复合材料。通过FTIR,XRD,SEM,TEM,DSC,TGA和阻抗研究对复合材料进行表征。FTIR光谱显示PPy / PTZ共混物中存在Ag-ZnO。XRD分析表明,通过添加Ag掺杂的ZnO颗粒可以大大提高聚合物共混物的半结晶性能。纳米颗粒在聚合物中的均匀分散是通过SEM分析获得的。TEM图像证实了PPy / PTZ共混物中球形纳米颗粒的存在,尺寸为10–25 nm。DSC测量表明,在掺银的ZnO纳米粒子的存在下,PPy / PTZ共混物的玻璃化转变温度得到了显着改善。从TGA获得的纳米复合材料的热分解温度随Ag-ZnO颗粒含量的增加而增加。将银掺杂的ZnO纳米颗粒掺入PPy / PTZ共混物中,由于复合系统扩展界面上的电荷堆积,使纳米复合材料的交流电导率和介电性能提高。纳米复合材料的直流电导率随纳米颗粒的负载而增加。分析了PPy / PTZ / Ag-ZnO纳米复合材料对氨气的传感性能,结果表明,所制备的共混复合物可作为容易获得气体分子的有希望的候选物。J.乙烯基添加物。TECHNOL。,Wiley Periodicals,Inc.代表塑料工程师协会出版的《乙烯基和添加剂技术杂志》。
更新日期:2019-08-15
down
wechat
bug