当前位置: X-MOL 学术Int. J. RF Microw. Comput.-Aided Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microwave antennas—An intrinsic part of RF energy harvesting systems: A contingent study about its design methodologies and state‐of‐art technologies in current scenario
International Journal of RF and Microwave Computer-Aided Engineering ( IF 0.9 ) Pub Date : 2020-01-10 , DOI: 10.1002/mmce.22148
Bikash R. Behera 1 , Priya R. Meher 1 , Sanjeev K. Mishra 1
Affiliation  

With the significant rise of low power embedded devices in various applications of both consumer and commercial usage, the surge for continuous power requirements has initiated promising research toward alternative sources of energy. It includes the domain of wireless power transmission, internet‐of‐things, wireless sensor nodes, machine‐to‐machine, and radio frequency identification. Thus, the overall scope of this review article is to witness microwave antennas and its implementation in RF energy harvesting system through ambient RF signals. For this reason, unified understanding of classical electromagnetism is needed; beginning with the fundamentals of RF transmission and the exploration of concepts such as Fraunhofer's Distance and Friis Transmission Equation. It is followed up by the analogy of dependency of parameters like circuit build‐up, conversion efficiencies and amount of power harvested, which is quite crucial from the rectifier point‐of‐view. For better improvisement in RF energy harvesting systems, five different cases of monopole antennas are explored with reflector surfaces such as PEC (perfect electrical conductor) and AMC (artificial magnetic conductor) integrated with the rectifier circuit. Implementation with wide diversity has proposed a generalized solution for achieving tradeoffs: polarization and pattern diversity with consistent system efficiency; leads to clean and sustainable energy for low power‐embedded devices.

中文翻译:

微波天线-RF能量收集系统的固有部分:在当前情况下对其设计方法和最先进技术的前瞻性研究

随着低功耗嵌入式设备在消费和商业用途的各种应用中的显着增长,持续不断的电源需求激增,引发了对替代能源的有前途的研究。它包括无线电力传输,物联网,无线传感器节点,机器对机器和射频识别的领域。因此,这篇综述文章的总体范围是通过环境RF信号见证微波天线及其在RF能量收集系统中的实现。因此,需要对经典电磁学有统一的理解。从射频传输的基础知识和对诸如弗劳恩霍夫距离和弗里斯传输方程等概念的探索开始。其次是类比参数的依存关系,例如电路建立,转换效率和收集的功率,从整流器的角度来看,这是至关重要的。为了更好地改进RF能量收集系统,研究了五种不同情况的单极天线,它们的反射器表面与整流器电路集成在一起,例如PEC(完美电导体)和AMC(人工磁导体)。具有广泛多样性的实现提出了一种实现折衷的通用解决方案:具有一致的系统效率的极化和模式多样性;可为低功耗嵌入式设备带来清洁,可持续的能源。为了更好地改进RF能量收集系统,研究了五种不同情况的单极天线,它们的反射器表面与整流器电路集成在一起,例如PEC(完美电导体)和AMC(人工磁导体)。具有广泛多样性的实施方案提出了一种通用的解决方案,以实现权衡:极化和模式多样性以及系统效率的一致性;可为低功耗嵌入式设备带来清洁,可持续的能源。为了更好地改进RF能量收集系统,研究了五种不同情况的单极天线,它们的反射器表面与整流器电路集成在一起,例如PEC(完美电导体)和AMC(人工磁导体)。具有广泛多样性的实现提出了一种实现折衷的通用解决方案:具有一致的系统效率的极化和模式多样性;可为低功耗嵌入式设备带来清洁,可持续的能源。极化和模式多样性,具有一致的系统效率;可为低功耗嵌入式设备带来清洁,可持续的能源。极化和模式多样性,具有一致的系统效率;可为低功耗嵌入式设备带来清洁,可持续的能源。
更新日期:2020-01-10
down
wechat
bug