当前位置: X-MOL 学术Regul. Chaot. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics of Rubber Chaplygin Sphere under Periodic Control
Regular and Chaotic Dynamics ( IF 0.8 ) Pub Date : 2020-04-10 , DOI: 10.1134/s1560354720020069
Ivan S. Mamaev , Evgeny V. Vetchanin

This paper examines the motion of a balanced spherical robot under the action of periodically changing moments of inertia and gyrostatic momentum. The system of equations of motion is constructed using the model of the rolling of a rubber body (without slipping and twisting) and is nonconservative. It is shown that in the absence of gyrostatic momentum the equations of motion admit three invariant submanifolds corresponding to plane-parallel motion of the sphere with rotation about the minor, middle and major axes of inertia. The above-mentioned motions are quasi-periodic, and for the numerical estimate of their stability charts of the largest Lyapunov exponent and charts of stability are plotted versus the frequency and amplitude of the moments of inertia. It is shown that rotations about the minor and major axes of inertia can become unstable at sufficiently small amplitudes of the moments of inertia. In this case, the so-called “Arnol’d tongues” arise in the stability chart. Stabilization of the middle unstable axis of inertia turns out to be possible at sufficiently large amplitudes of the moments of inertia, when the middle axis of inertia becomes the minor axis for a part of a period. It is shown that the nonconservativeness of the system manifests itself in the occurrence of limit cycles, attracting tori and strange attractors in phase space. Numerical calculations show that strange attractors may arise through a cascade of period-doubling bifurcations or after a finite number of torus-doubling bifurcations.

中文翻译:

周期性控制的橡胶Chaplygin球的动力学

本文研究了在周期性变化的惯性矩和回旋动量的作用下,平衡球形机器人的运动。运动方程组是使用橡胶体滚动模型(无打滑和扭曲)构造的,是非保守的。结果表明,在没有回旋动量的情况下,运动方程允许三个不变的子流形,这些子流形与球体围绕副,中,长轴旋转的平面平行运动相对应。上述运动是准周期的,为了对其最大Lyapunov指数的稳定性图表进行数值估计,并绘制了相对于惯性矩的频率和幅度的稳定性图表。结果表明,绕惯性短轴和主轴的旋转在惯性矩足够小的振幅下会变得不稳定。在这种情况下,在稳定性图表中会出现所谓的“ Arnol'd舌头”。当中间惯性轴在一段时间内变成短轴时,中间不稳定惯性轴的稳定化可能在足够大的惯性矩振幅下实现。结果表明,系统的非保守性表现为极限环的出现,在相空间中吸引了圆环和奇异吸引子。数值计算表明,奇怪的吸引子可能是通过级联倍周期分叉的级联或在一定数量的环形倍增分叉之后产生的。稳定性图表中出现了所谓的“阿诺德舌头”。当中间惯性轴在一段时期内变成短轴时,中间不稳定惯性轴的稳定化可能在足够大的惯性矩振幅下实现。结果表明,系统的非保守性表现为极限环的出现,在相空间中吸引了圆环和奇异吸引子。数值计算表明,奇怪的吸引子可能是通过级联倍周期分叉的级联或在一定数量的环形倍增分叉之后产生的。稳定性图表中出现了所谓的“阿诺德舌头”。当中间惯性轴在一段时间内变成短轴时,中间不稳定惯性轴的稳定化可能在足够大的惯性矩振幅下实现。结果表明,系统的非保守性表现为极限环的出现,在相空间中吸引了圆环和奇异吸引子。数值计算表明,奇怪的吸引子可能是通过级联倍周期分叉的级联或在一定数量的环形倍增分叉之后产生的。当中间惯性轴在一段时间内变为短轴时。结果表明,系统的非保守性表现为极限环的出现,在相空间中吸引了圆环和奇异吸引子。数值计算表明,奇怪的吸引子可能是通过级联倍周期分叉的级联或在一定数量的环形倍增分叉之后产生的。当中间惯性轴在一段时间内变为短轴时。结果表明,系统的非保守性表现为极限环的出现,在相空间中吸引了圆环和奇异吸引子。数值计算表明,奇怪的吸引子可能是通过倍增周期的分叉级联或在有限数量的环加倍的分叉之后产生的。
更新日期:2020-04-10
down
wechat
bug