当前位置: X-MOL 学术Rend. Fis. Acc. Lincei. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A contribution to neuromorphic engineering: neuromodulation implemented through photochromic compounds maintained out of equilibrium by UV–visible radiation
Rendiconti Lincei. Scienze Fisiche e Naturali ( IF 2.1 ) Pub Date : 2020-01-30 , DOI: 10.1007/s12210-020-00869-y
Beatrice Bartolomei , B. Mark Heron , Pier Luigi Gentili

Neuromodulation is the alteration of neuronal and synaptic properties in the context of neuronal circuits. It allows anatomically defined circuits to produce multiple outputs reconfiguring networks into different functional circuits. In this work, neuromodulation is mimicked using a solution of two direct photochromic compounds, a naphthopyran and a spirooxazine, which are models of phasic excitable neurons, sensitive to UV radiation. When the system, constituted by the two photochromic compounds, receives a UV signal, it behaves as a recurrent network with mutual inhibitory actions. The network responds to different UV wavelengths by changing its photo-excitability, synaptic strength, wiring of the circuit, and dynamics. These results contribute to the development of neuromorphic engineering. They will promote the design of artificial neural networks with a larger number of nodes, communicating through optical signals. These networks will be the essential ingredients of the new-generation brain-like computing machines complementing current electronic computers.

中文翻译:

对神经形态工程的贡献:通过光致变色化合物实现的神经调节被紫外线可见辐射保持不平衡

神经调节是神经元回路中神经元和突触性质的改变。它允许解剖学上定义的电路将多个输出重新配置网络生成为不同的功能电路。在这项工作中,使用两种直接光致变色化合物(萘并吡喃和螺恶嗪)的溶液来模拟神经调节,这两种化合物是对紫外线辐射敏感的阶段性可激发神经元模型。当由两种光致变色化合物组成的系统接收紫外线信号时,其表现为具有相互抑制作用的循环网络。该网络通过更改其光激发性,突触强度,电路布线和动力学来响应不同的UV波长。这些结果有助于神经形态工程的发展。他们将促进具有大量节点并通过光信号进行通信的人工神经网络的设计。这些网络将成为与现有电子计算机互补的新一代类似于大脑的计算机的基本组成部分。
更新日期:2020-01-30
down
wechat
bug