当前位置: X-MOL 学术Plant Biotechnol. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genetic engineering approaches to understanding drought tolerance in plants
Plant Biotechnology Reports ( IF 1.7 ) Pub Date : 2020-02-07 , DOI: 10.1007/s11816-020-00598-6
Zabta Khan Shinwari , Sohail Ahmad Jan , Kazuo Nakashima , Kazuko Yamaguchi-Shinozaki

Abiotic stresses such as drought, salinity, frost, etc., affect plant yield manyfold. These stresses can decrease the plant yield of important major crops up to 50%. The abiotic stress-related genes or other transcription factors (TFs) have multiple functions, as it increases proline content, leads closing of stomata to decrease the transpiration rate, enhances the production of some important stress-related protective enzymes, etc. and hence increases abiotic stress tolerance. Many TFs and other stress-related genes have been identified and characterized and transformed to many important cultivated plants against drought and others abiotic stresses. The transformed plants show better morpho-biochemical and physiological performances than non-transgenic plants. Many genetically engineered plants have been developed against drought stress including wheat, rice, tomato, soybean, cotton and many more. The efficiently engineered clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system is now becoming a preferred choice of researchers to edit plant genomes for introgression natural resistance against a range of abiotic stresses. It leads genome editing by precise manure with minimal or no effect on growth and development of plants. Very limited reports are available to develop drought-tolerant plants using CRISPR/Cas9 system. Here we discuss transgenic plant technology and new [CRISPR Cas9 and Virus-Induced Gene Silencing (VIGS)] techniques to confer drought tolerance in important plant species.

中文翻译:

利用基因工程方法了解植物的耐旱性

非生物胁迫,例如干旱,盐分,霜冻等,对植物产量的影响成倍增加。这些压力可能会使重要的主要农作物的植物减产高达50%。非生物胁迫相关基因或其他转录因子(TF)具有多种功能,因为它增加了脯氨酸的含量,导致气孔关闭从而降低蒸腾速率,增强了一些重要的胁迫​​相关保护酶的产生等,因此增加非生物胁迫耐受性。已经鉴定并鉴定了许多TF和其他与胁迫相关的基因,并将其转化为许多重要的栽培植物,以抗干旱和其他非生物胁迫。转化的植物比非转基因植物表现出更好的形态生化和生理性能。已经开发出许多抗干旱的基因工程植物,包括小麦,水稻,番茄,大豆,棉花等。高效设计的簇状调控间隔短回文重复序列(CRISPR)/ CRISPR相关核酸酶9(Cas9)系统现已成为研究人员编辑植物基因组以抵抗一系列非生物胁迫的自然抗性的首选。它通过精确的肥料引导基因组编辑,对植物的生长和发育影响很小或没有影响。关于使用CRISPR / Cas9系统开发耐旱植物的报道非常有限。在这里,我们讨论转基因植物技术和新的[CRISPR Cas9和病毒诱导的基因沉默(VIGS)]技术,以赋予重要植物物种以耐旱性。高效设计的簇状调控间隔短回文重复序列(CRISPR)/ CRISPR相关核酸酶9(Cas9)系统现已成为研究人员编辑植物基因组以抵抗一系列非生物胁迫的自然抗性的首选。它通过精确的肥料引导基因组编辑,而对植物的生长和发育影响很小或没有影响。关于使用CRISPR / Cas9系统开发耐旱植物的报道非常有限。在这里,我们讨论转基因植物技术和新的[CRISPR Cas9和病毒诱导的基因沉默(VIGS)]技术,以赋予重要植物物种以耐旱性。高效设计的簇状调控间隔短回文重复序列(CRISPR)/ CRISPR相关核酸酶9(Cas9)系统现已成为研究人员编辑植物基因组以抵抗一系列非生物胁迫的自然抗性的首选。它通过精确的肥料引导基因组编辑,对植物的生长和发育影响很小或没有影响。关于使用CRISPR / Cas9系统开发耐旱植物的报道非常有限。在这里,我们讨论转基因植物技术和新的[CRISPR Cas9和病毒诱导的基因沉默(VIGS)]技术,以赋予重要植物物种以耐旱性。
更新日期:2020-02-07
down
wechat
bug