当前位置: X-MOL 学术Astron. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Norm of the Position Shift of a Celestial Body in a Dynamical Astronomy Problem
Astronomy Reports ( IF 1 ) Pub Date : 2020-04-14 , DOI: 10.1134/s1063772920040034
K. V. Kholshevnikov , N. Batmunkh , K. I. Oskina , V. B. Titov

Abstract

The averaging method is widely used in celestial mechanics, in which a mean orbit is introduced and slightly deviates from an osculating one, as long as disturbing forces are small. The difference \(\delta {\mathbf{r}}\) in the celestial body positions in the mean and osculating orbits is a quasi-periodic function of time. Estimating the norm \(\left\| {\delta {\mathbf{r}}} \right\|\) for deviation is interesting to note. Earlier, the exact expression of the mean-square norm for one problem of celestial mechanics was obtained: a zero-mass point moves under the gravitation of a central body and a small perturbing acceleration \({\mathbf{F}}\). The vector \({\mathbf{F}}\) is taken to be constant in a co-moving coordinate system with axes directed along the radius vector, the transversal, and the angular momentum vector. Here, we solved a similar problem, assuming the vector \({\mathbf{F}}\) to be constant in the reference frame with axes directed along the tangent, the principal normal, and the angular momentum vector. It turned out that \({{\left\| {\delta {\mathbf{r}}} \right\|}^{2}}\) is proportional to \({{a}^{6}}\), where \(a\) is the semi-major axis. The value \({{\left\| {\delta {\mathbf{r}}} \right\|}^{2}}{{a}^{{ - 6}}}\) is the weighted sum of the component squares of \({\mathbf{F}}\). The quadratic form coefficients depend only on the eccentricity and are represented by the Maclaurin series in even powers of \(e\) that converge, at least for \(e < 1\). The series coefficients are calculated up to \({{e}^{4}}\) inclusive, so that the correction terms are of order \({{e}^{6}}\).



中文翻译:

动态天文学问题中天体位置偏移的范数

摘要

该平均方法被广泛用于天体力学中,只要干扰力较小,就可以引入平均轨道,并且该平均轨道略微偏离振荡轨道。在平均轨道和振荡轨道中天体位置的差异\(\ delta {\ mathbf {r}} \)是时间的准周期函数。估计范数\(\ left \ | {\ delta {\ mathbf {r}}} \ right \ | \)的偏差很有趣。早先,获得了一个天体力学问题的均方范数的精确表达式:零质量点在中心物体的引力作用下移动,并且扰动加速度很小(\({\ mathbf {F}} \)。向量\({\ mathbf {F}} \)在共同移动的坐标系中,α是恒定的,其坐标轴沿半径向量,横向和角动量向量指向。在这里,我们解决了一个类似的问题,假设向量\({\ mathbf {F}} \)在参考系中是恒定的,并且轴沿切线,主法线和角动量向量指向。原来\({{\ left \ | {\ delta {\ mathbf {r}}} \ right \ |} ^ {2}} \)\({{a} ^ {6}} \ ),其中\(a \)是半长轴。值\({{\ left \ | {\ delta {\ mathbf {r}}} \ right \ |} ^ {2}} {{a} ^ {{-6}}} \)是以下项的加权和\({\ mathbf {F}} \)的分量平方。二次形式系数仅取决于偏心率,并且由Maclaurin级数表示,至少在\(e <1 \)时,以\(e \)的偶次幂收敛。序列系数的计算最高为\({{e} ^ {4}} \),因此校正项的阶次为\({{e} ^ {6}} \)

更新日期:2020-04-23
down
wechat
bug