当前位置: X-MOL 学术J. Dyn. Diff. Equat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Blowup on an Arbitrary Compact Set for a Schrödinger Equation with Nonlinear Source Term
Journal of Dynamics and Differential Equations ( IF 1.4 ) Pub Date : 2020-03-14 , DOI: 10.1007/s10884-020-09841-8
Thierry Cazenave , Zheng Han , Yvan Martel

We consider the nonlinear Schrödinger equation on \({\mathbb R}^N \), \(N\ge 1\),

$$\begin{aligned} \partial _t u = i \varDelta u + \lambda | u |^\alpha u \end{aligned}$$

with \(\lambda \in {\mathbb C}\) and \(\mathfrak {R}\lambda >0\), for \(H^1\)-subcritical nonlinearities, i.e. \(\alpha >0\) and \((N-2) \alpha < 4\). Given a compact set \(K \subset {\mathbb {R}}^N \), we construct \(H^1\) solutions that are defined on \((-T,0)\) for some \(T>0\), and blow up on K at \(t=0\). The construction is based on an appropriate ansatz. The initial ansatz is simply \(U_0(t,x) = ( \mathfrak {R}\lambda )^{- \frac{1}{\alpha }} (-\alpha t + A(x) )^{ -\frac{1}{\alpha } - i \frac{\mathfrak {I}\lambda }{\alpha \mathfrak {R}\lambda } }\), where \(A\ge 0\) vanishes exactly on K, which is a solution of the ODE \(u'= \lambda | u |^\alpha u\). We refine this ansatz inductively, using ODE techniques. We complete the proof by energy estimates and a compactness argument. This strategy is reminiscent of Cazenave et al. (Discrete Contin Dyn Syst 39(2):1171–1183, 2019. https://doi.org/10.3934/dcds.2019050; Solutions blowing up on any given compact set for the energy subcritical wave equation. 2018. arXiv:1812.03949).



中文翻译:

带非线性源项的薛定ding方程的任意紧集上的爆破

我们认为在非线性薛定谔方程\({\ mathbb R} ^ N \) \(N \ GE 1 \)

$$ \ begin {aligned} \ partial _t u = i \ varDelta u + \ lambda | u | ^ \ alpha u \ end {aligned} $$

\(\ lambda \ in {\ mathbb C} \)\(\ mathfrak {R} \ lambda> 0 \)中,对于\(H ^ 1 \)-次临界非线性,即\(\ alpha> 0 \)\((N-2)\ alpha <4 \)。给定一个紧凑集\(K \ subset {\ mathbb {R}} ^ N \),我们构造\(H ^ 1 \)\((-T,0)\)上为一些\(T > 0 \) ,和炸毁上ķ\(T = 0 \) 。该结构基于适当的ansatz。最初的ansatz很简单\(U_0(t,x)=(\ mathfrak {R} \ lambda)^ {-\ frac {1} {\ alpha}}(-\ alpha t + A(x))^ {-\ frac {1} {\ alpha}-i \ frac {\ mathfrak {I} \ lambda} {\ alpha \ mathfrak {R} \ lambda}} \),其中\(A \ ge 0 \)完全在K上消失,这是一个解决方案ODE的\(u'= \ lambda | u | ^ \ alpha u \)。我们使用ODE技术感应地完善了ansatz。我们通过能量估计和紧凑性论证来完成证明。这种策略使人联想到Cazenave等人。(离散Contin Dyn Syst 39(2):1171–1183,2019. https://doi.org/10.3934/dcds.2019050;解决方案在能量亚临界波动方程的任何给定紧缩集上爆炸.2018.arXiv:1812.03949 )。

更新日期:2020-04-18
down
wechat
bug