当前位置: X-MOL 学术J. Fire Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characteristics of fire in high-speed train carriages
Journal of Fire Sciences ( IF 1.9 ) Pub Date : 2019-12-17 , DOI: 10.1177/0734904119894527
Haiquan Bi 1 , Yuanlong Zhou 1 , Honglin Wang 1 , Qilin Gou 2 , Xiaoxia Liu 3
Affiliation  

With the rapid development of high-speed railways, safety hazards presented by train fires cannot be ignored. An effective design for protection against fire in high-speed trains is essential to ensure passenger safety. In this study, the cone calorimeter and ignition temperature tester were used to carry out combustion experiments on materials constituting the main components of the train. The heat release rate, smoke yield, CO yield, and ignition temperature of combustible materials were tested. Based on the experimental data of material combustion, a numerical model of the high-speed train carriage fire was simulated. The accuracy of the numerical simulation was verified by drawing a comparison with the full-scale train fire experiment in existing literature. The numerical simulation results revealed that when the fire source is present at the corner of the carriage end door, the fire develops to the maximum possible extent in approximately 25 min, with a peak heat release rate of approximately 38.4 MW. Increase in the carriage fire heat release rate and breakage of windows occur almost simultaneously. Improvement of the fireproof performance of windows can inhibit and delay the carriage fire development. For the flashover of carriage fire, the spread speed of the flashover area in the longitudinal direction inside the carriage is approximately 1.9 m/s. The end door area furthest from the fire source in the carriage has strong flashover, while the flashover in other areas is weak.

中文翻译:

高速列车车厢火灾特征

随着高速铁路的快速发展,列车火灾带来的安全隐患不容忽视。有效的高速列车防火设计对于确保乘客安全至关重要。本研究采用锥形量热仪和点火温度测试仪对列车主要部件材料进行燃烧实验。测试了可燃材料的放热率、发烟量、CO 产生量和着火温度。基于材料燃烧实验数据,建立了高速列车车厢火灾数值模型。通过与现有文献中的全尺寸列车火灾实验进行比较,验证了数值模拟的准确性。数值模拟结果表明,当火源出现在车厢端门拐角处时,火势在约25 min内发展到最大程度,峰值热释放率约为38.4 MW。车厢火灾热释放率的增加和窗户的破裂几乎同时发生。提高窗户的防火性能可以抑制和延缓车厢火灾的发展。对于车厢火灾的闪络,闪络区在车厢内纵向的蔓延速度约为1.9 m/s。车厢内离火源最远的端门区域闪络较强,其他区域闪络较弱。峰值热释放率约为 38.4 MW。车厢火灾热释放率的增加和窗户的破裂几乎同时发生。提高窗户的防火性能可以抑制和延缓车厢火灾的发展。对于车厢火灾的闪络,闪络区在车厢内纵向的蔓延速度约为1.9 m/s。车厢内离火源最远的端门区域闪络较强,其他区域闪络较弱。峰值热释放率约为 38.4 MW。车厢火灾热释放率的增加和窗户的破裂几乎同时发生。提高窗户的防火性能可以抑制和延缓车厢火灾的发展。对于车厢火灾的闪络,闪络区在车厢内纵向的蔓延速度约为1.9 m/s。车厢内离火源最远的端门区域闪络较强,其他区域闪络较弱。车内闪络区沿纵向的扩展速度约为1.9 m/s。车厢内离火源最远的端门区域闪络较强,其他区域闪络较弱。车内闪络区沿纵向的扩展速度约为1.9 m/s。车厢内离火源最远的端门区域闪络较强,其他区域闪络较弱。
更新日期:2019-12-17
down
wechat
bug