当前位置: X-MOL 学术J. Strain Anal. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Frequency analysis of a graphene platelet–reinforced imperfect cylindrical panel covered with piezoelectric sensor and actuator
The Journal of Strain Analysis for Engineering Design ( IF 1.6 ) Pub Date : 2020-03-10 , DOI: 10.1177/0309324719900462
Mohammad Reza Jalali 1 , Aghil Shavalipour 2 , Mehran Safarpour 3 , Hossein Moayedi 4 , Hamed Safarpour 5
Affiliation  

The main point of the current study is that the frequency analysis of a graphene platelets–reinforced composite (GPLRC) imperfect panel covered with piezoelectric sensor and actuator (PISA) based on the 3D elasticity theory is investigated. Rule of mixture is employed to obtain varying mass density and Poisson’s ratio, while module of elasticity is computed by modified Halpin-Tsai model. The governing equations are obtained using the 3D elasticity theory. By using Fourier series expansion along the longitudinal and latitudinal directions for the stress and displacement fields, a closed form solution is derived. The novelty of the current study is the consideration of the GPLRC panel and PISA, as well as imperfection are implemented on the proposed model using theory of 3D elasticity. Due to perfect bonding between piezoelectric layers and core the compatibility conditions are derived. Finally, influences of PISA thickness, graphene platelet (GPL) distribution pattern, porosity, span angle of panel, number of layers and GPL weight function on the dynamic stability of the GPLRC smart imperfect panel are presented. Another important consequence is that the sandwich panels with lower span angle have better natural frequency. In other words, to obtain desirable frequency response using structures which their shape is similar to GPLRC plate is more recommended than those resemble to GPLRC cylindrical shell.

中文翻译:

覆盖有压电传感器和执行器的石墨烯薄片增强不完美圆柱形面板的频率分析

当前研究的重点是基于 3D 弹性理论研究了覆盖有压电传感器和执行器 (PISA) 的石墨烯薄片增强复合材料 (GPLRC) 缺陷面板的频率分析。混合规则用于获得不同的质量密度和泊松比,而弹性模量由改进的Halpin-Tsai模型计算。控制方程是使用 3D 弹性理论获得的。通过对应力场和位移场沿纵向和横向使用傅立叶级数展开,推导出封闭形式的解。当前研究的新颖之处在于考虑了 GPLRC 面板和 PISA,以及使用 3D 弹性理论在所提出的模型上实现了缺陷。由于压电层和磁芯之间的完美结合,导出了兼容性条件。最后,介绍了 PISA 厚度、石墨烯薄片 (GPL) 分布模式、孔隙率、面板跨度角、层数和 GPL 权重函数对 GPLRC 智能缺陷面板动态稳定性的影响。另一个重要的结果是跨角较小的夹芯板具有更好的固有频率。换句话说,为了获得理想的频率响应,使用形状类似于 GPLRC 板的结构比那些类似于 GPLRC 圆柱壳的结构更值得推荐。给出了 GPLRC 智能缺陷面板动态稳定性的层数和 GPL 权重函数。另一个重要的结果是跨角较小的夹芯板具有更好的固有频率。换句话说,为了获得理想的频率响应,使用形状类似于 GPLRC 板的结构比那些类似于 GPLRC 圆柱壳的结构更值得推荐。给出了 GPLRC 智能缺陷面板动态稳定性的层数和 GPL 权重函数。另一个重要的结果是跨角较小的夹芯板具有更好的固有频率。换句话说,为了获得理想的频率响应,使用形状类似于 GPLRC 板的结构比那些类似于 GPLRC 圆柱壳的结构更值得推荐。
更新日期:2020-03-10
down
wechat
bug