当前位置: X-MOL 学术Solid State Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved physics-based analysis to discriminate the flicker noise origin at very low temperature and drain voltage polarization
Solid-State Electronics ( IF 1.4 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.sse.2020.107771
B. Cretu , D. Boudier , E. Simoen , A. Veloso , N. Collaert , C. Claeys

Low frequency noise study is performed at deep cryogenic temperature of 10 K in p-channel gate-all-around (GAA) nanowire (NW) FETs. As expected, the carrier number fluctuations mechanism explains the flicker noise origin for conventional fixed applied drain bias.

At very low applied drain biases step-like effects impact the drain current transfer characteristics. Noise measurements performed at a fixed very low drain voltage as a function of the applied gate bias show that the gate voltage flicker noise behavior follows a IDS3/2/gm2 law. It was already proved that this dependency may be modeled considering classical transport theory, in the framework of the mobility fluctuations mechanism from Coulomb scattering interactions.

The noise measurements performed at fixed gate voltage as a function of the applied drain bias show that the gate voltage 1/f noise levels present a deviation from the IDS3/2/gm2 law. In order to explain this behavior, an improved model is proposed mainly considering some additional hypotheses: the inversion charge dependency on the applied drain bias and the fact that the impact of the drift component of the drain current may be neglected when measurements are made at low fixed gate voltage biases for very low applied drain voltages.

The results show that for the lower drain biases considered in this work, the flicker noise behavior may be explained using physical-based models derived from classical transport considerations for cryogenic temperatures by the mobility fluctuations mechanism originating from Coulomb scattering interactions. This may be surprising, and suggests that even if step-like effects impact the DC measurements, there is a polarization interval in which they do not impact the 1/f noise.



中文翻译:

改进的基于物理的分析可区分非常低的温度和漏极电压极化下的闪烁噪声源

低频噪声研究是在p通道全栅(GAA)纳米线(NW)FET中于10 K的深低温下进行的。不出所料,载流子数量波动机制解释了常规固定施加漏极偏置的闪烁噪声起源。

在非常低的漏极偏压下,阶梯状效应会影响漏极电流传输特性。在固定的极低漏极电压下,根据施加的栅极偏置进行的噪声测量表明,栅极电压闪烁噪声行为遵循一世DS3/2/G2法。已经证明,可以在库仑散射相互作用的迁移率涨落机制的框架内考虑经典输运理论对这种依赖性进行建模。

在固定的栅极电压下作为施加的漏极偏置的函数进行的噪声测量表明,栅极电压1 / f噪声电平呈现出与栅极电压的偏差。一世DS3/2/G2法。为了解释这种现象,提出了一种改进的模型,主要考虑了一些其他假设:反转电荷对施加的漏极偏置的依赖性以及在低电压下进行测量时可以忽略漏极电流漂移分量的影响这一事实。固定的栅极电压偏置可实现非常低的施加漏极电压。

结果表明,对于这项工作中考虑的较低漏极偏置,可使用基于库仑散射相互作用的迁移率涨落机制,基于物理模型来解释闪烁噪声行为,该模型基于经典运输考虑的低温温度而得出。这可能令人惊讶,并表明,即使阶梯状效应影响了DC测量,也存在一个极化间隔,在该极化间隔中它们不会影响1 / f噪声。

更新日期:2020-02-01
down
wechat
bug