当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of Dual‐Carbon Co‐Modified LiFePO4 Nanocrystals via Microreactor Strategy for High‐Performance Lithium Ion Batteries
Energy Technology ( IF 3.6 ) Pub Date : 2020-04-29 , DOI: 10.1002/ente.202000171
Bo Wang 1, 2 , Zekun Zhang 1 , Yu Ning 1 , Xinkui Li 1 , Tingting Ruan 1 , Fei Wang 1 , Dianlong Wang 1 , Yu Zhou 2
Affiliation  

A facile and controllable dual‐carbon microreactor approach has been developed to prepare graphene and amorphous carbon co‐decorated LiFePO4 (LFP) nanocomposites (G/LFP@C). Physical characterizations demonstrate that the particle size of the restricted LFP crystals is ≈30–50 nm, which are well proportioned and well anchored on the surface of graphene and completely coated by the amorphous carbon layers. The electrochemical data demonstrate the impressive electrochemical performances of the G/LFP@C composite and its application potential as a cathode material of lithium ion batteries (LIBs). Particularly, the large specific capacity (161.3 mAh g−1 at 0.2 C), superior rate property (93.8 mAh g−1 at 20 C), and outstanding cycling stability (97.3% capacity retention over 1000 cycles at 10 C) are simultaneously realized for G/LFP@C because of the optimized electrochemical reaction kinetics with effective dual‐carbon co‐constructed conductive network and abundant active sites. It is believe that this work not only supplies unique in sights into the reasonable design of LFP materials for favorable property LIBs, but also holds great potential for the energy storage market.

中文翻译:

通过微反应器策略构建高性能锂离子电池双碳共改性LiFePO4纳米晶体

已经开发了一种简便且可控的双碳微反应器方法来制备石墨烯和无定形碳共装饰的LiFePO 4(LFP)纳米复合材料(G / LFP @ C)。物理特征表明,受限制的LFP晶体的粒径约为≈30–50 nm,它们具有适当的比例,并且很好地固定在石墨烯的表面,并被无定形碳层完全覆盖。电化学数据证明了G / LFP @ C复合材料令人印象深刻的电化学性能及其作为锂离子电池(LIBs)正极材料的应用潜力。特别是,大的比容量(0.2 C下为161.3 mAh g -1),优异的速率特性(93.8 mAh g -1)G / LFP @ C可同时实现出色的循环稳定性(在10 C下1000次循环中97.3%的容量保持率),这是因为其电化学反应动力学得到了优化,具有有效的双碳共构导电网络和丰富的活性物质网站。可以肯定的是,这项工作不仅为LFP材料的合理设计提供了独特的视野,而且还为储能市场提供了巨大的潜力。
更新日期:2020-07-02
down
wechat
bug