当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Novel Ultrathin Si?O Layer Endowing Significant Improvement of Interface Properties for Nickel‐Rich Cathode Materials in Lithium‐Ion Batteries
Energy Technology ( IF 3.6 ) Pub Date : 2020-04-29 , DOI: 10.1002/ente.202000204
Hui Dai 1 , Haishang Cao 1 , Fanghui Du 1 , Qun Zhou 1 , Jason Adkins 1 , Pengpeng Sun 1 , Die Hu 1 , Junwei Zheng 1
Affiliation  

A molecular coating strategy is used to modify the surface of LiNi0.8Co0.1Mn0.1O2 with a monolayer, or a few layers, of [3‐(trimethoxysilyl)propyl]urea. Upon calcination of the material, an ultrathin SiO layer is formed on the surface of LiNi0.8Co0.1Mn0.1O2. The modification of the ultrathin SiO layer results only in a slight decrease in the specific capacity of LiNi0.8Co0.1Mn0.1O2 (≈204 mAh g−1 at 0.1 C), however, the ultrathin SiO layer endows the material with excellent cycling stability and rate capability. The electrode with surface‐modified material can deliver 87.5% of the initial discharge capacity after 300 cycles at 1 C, whereas the corresponding capacity retention of the pristine counterpart is only 62.5%. Similarly, the capacity retentions for the modified material and pristine counterpart are 76.0% and 55.7% at 2 C, respectively, relative to the capacities at 0.1 C. The results are ascribed to the covalently bonded structure of the SiO layer efficiently alleviating the side reaction of the electrolytes and enhancing the kinetics of the charge transfer processes at the interface. This strategy would be also applicable to other metal oxide materials to optimize the performance for lithium‐ion batteries.

中文翻译:

一种新颖的超薄硅O层极大地改善了锂离子电池中富镍阴极材料的界面性能

使用分子涂层策略以单层或几层[3-(三甲氧基甲硅烷基)丙基]脲修饰LiNi 0.8 Co 0.1 Mn 0.1 O 2的表面。材料煅烧后,在LiNi 0.8 Co 0.1 Mn 0.1 O 2的表面上形成了一层超薄的SiO层。极薄的SiO层的改性只会导致LiNi 0.8 Co 0.1 Mn 0.1 O 2的比容量略有下降(在0.1 C时≈204mAh g -1),但是,极薄的SiO层使材料具有出色的循环稳定性和倍率性能。具有表面改性材料的电极在1 C下经过300次循环后可提供初始放电容量的87.5%,而原始的对应电极的相应容量保持率仅为62.5%。同样,相对于0.1 C时的容量,改性材料和原始原料在2 C时的容量保持率分别为76.0%和55.7%。该结果归因于SiO层的共价键合结构可有效缓解电解质的副反应并增强界面处电荷转移过程的动力学。该策略也适用于其他金属氧化物材料,以优化锂离子电池的性能。
更新日期:2020-07-02
down
wechat
bug