当前位置: X-MOL 学术Front. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preparation and lithium storage performances of g-C 3 N 4 /Si nanocomposites as anode materials for lithium-ion battery
Frontiers in Energy ( IF 3.1 ) Pub Date : 2020-05-06 , DOI: 10.1007/s11708-020-0810-0
Zhengxu Bian , Zehua Tang , Jinfeng Xie , Junhao Zhang , Xingmei Guo , Yuanjun Liu , Aihua Yuan , Feng Zhang , Qinghong Kong

As the anode material of lithium-ion battery, silicon-based materials have a high theoretical capacity, but their volume changes greatly in the charging and discharging process. To ameliorate the volume expansion issue of silicon-based anode materials, g-C3N4/Si nanocomposites are prepared by using the magnesium thermal reduction technique. It is well known that g-C3N4/Si nanocomposites can not only improve the electronic transmission ability, but also ameliorate the physical properties of the material for adapting the stress and strain caused by the volume expansion of silicon in the lithiation and delithiation process. When g-C3N4/Si electrode is evaluated, the initial discharge capacity of g-C3N4/Si nanocomposites is as high as 1033.3 mAh/g at 0.1 A/g, and its reversible capacity is maintained at 548 mAh/g after 400 cycles. Meanwhile, the improved rate capability is achieved with a relatively high reversible specific capacity of 218 mAh/g at 2.0 A/g. The superior lithium storage performances benefit from the unique g-C3N4/Si nanostructure, which improves electroconductivity, reduces volume expansion, and accelerates lithium-ion transmission compared to pure silicon.



中文翻译:

gC 3 N 4 / Si纳米复合材料作为锂离子电池负极材料的制备及储锂性能

硅基材料作为锂离子电池的负极材料,具有较高的理论容量,但在充放电过程中其体积变化很大。为了改善硅基负极材料的体积膨胀问题,使用镁热还原技术制备了gC 3 N 4 / Si纳米复合材料。众所周知,gC 3 N 4 / Si纳米复合材料不仅可以提高电子传输能力,而且可以改善材料的物理性能,以适应锂在锂化和脱锂过程中因硅的体积膨胀而引起的应力和应变。当gC 3 N 4评估/ Si电极,gC 3 N 4 / Si纳米复合材料在0.1 A / g时的初始放电容量高达1033.3 mAh / g,并且在400次循环后其可逆容量保持在548 mAh / g。同时,在2.0 A / g时具有218 mAh / g的相对较高的可逆比容量,从而实现了提高的倍率性能。优异的锂存储性能得益于独特的gC 3 N 4 / Si纳米结构,与纯硅相比,该纳米结构可提高导电性,减少体积膨胀并加速锂离子的传输。

更新日期:2020-04-29
down
wechat
bug