当前位置: X-MOL 学术Proc. Inst. Mech. Eng. E J. Process Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magneto-hydrodynamic (MHD) micropump of nanofluids in a rotating microchannel under electrical double-layer effect
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ( IF 2.3 ) Pub Date : 2020-04-28 , DOI: 10.1177/0954408920921697
Pranab Kumar Mondal 1 , Somchai Wongwises 2, 3
Affiliation  

We investigate the electroosmosis of nanofluid in a rotating microfluidic channel under the influence of an applied magnetic field. We bring out the rotation-induced complex flow dynamics in the channel as modulated by the nanoparticle driven modifications in the viscous drag. In particular, we observe the flow reversal at the center of the channel, emerging from an intricate competition among different forcings under consideration. We identify the critical rotation Reynolds number, signifying the critical strength of channel rotation relative to the viscous resistance to the flow, for which the flow reversal at the channel center sets in. We demonstrate that the strength of the flow reversal for higher rotation Reynolds number decreases, since higher rotation Reynolds number breaks the interparticle interactions, leading to an enhancement in the effective viscosity of the fluid. Finally, we explain the consequential effects of colloidal suspensions of nanoparticle as realized through the particle concentration and agglomeration size on the alterations in the volume transport rates in the channel.

中文翻译:

双电层效应下旋转微通道中纳米流体的磁流体力学 (MHD) 微泵

我们研究了在外加磁场的影响下旋转微流体通道中纳米流体的电渗。我们展示了通道中旋转诱导的复杂流动动力学,由纳米颗粒驱动的粘性阻力修改调节。特别是,我们观察到通道中心的流动逆转,这是由于所考虑的不同强迫之间的复杂竞争而产生的。我们确定临界旋转雷诺数,表示相对于流动的粘性阻力的通道旋转的临界强度,为此通道中心的流动反转设置。我们证明了更高旋转雷诺数的流动反转强度降低,因为更高的旋转雷诺数会破坏粒子间的相互作用,从而提高流体的有效粘度。最后,我们解释了纳米颗粒胶体悬浮液的后续影响,如通过颗粒浓度和团聚尺寸对通道中体积传输速率变化的影响。
更新日期:2020-04-28
down
wechat
bug