当前位置: X-MOL 学术Estuar. Coastal Shelf Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Partial canopy loss of mangrove trees: Mitigating water scarcity by physical adaptation and feedback on porewater salinity
Estuarine, Coastal and Shelf Science ( IF 2.8 ) Pub Date : 2020-04-29 , DOI: 10.1016/j.ecss.2020.106797
Ronny Peters , Catherine Lovelock , Jorge López-Portillo , Jasper Bathmann , Marie-Christin Wimmler , Jiang Jiang , Marc Walther , Uta Berger

Trees species in the mangrove genus Avicennia can shed canopy parts when exposed to adverse environmental conditions, such as increases in porewater salinity. The individual-based model BETTINA enables the quantification of the tree's water use depending on its allometric characteristics. It thus provides a tool to model the equilibrium between plant size and density in a mangrove stand and porewater salinity. When the model is coupled with a simple water balance approach, the water use of trees corresponds to water uptake from the soil and, in combination with water fluxes, an increase of salinity in the root zone. Annual variations of the sea level, the tidal regime, groundwater inflow, and precipitation have an impact on the equilibrium of the combined system. Higher salinities lead to lower potential gradients and reduced water uptake of the plant. With a combined modelling approach (single tree model BETTINA with a simple water balance approach), we examined the dampening effects of consecutive partial canopy loss for the survival of the tree. We found that (i) the tree is able to decrease water demand and uptake and thus may reduce the tree's effect on soil water salinity, (ii) the reduced branch length leads to a reduced xylem flow resistance, and (iii) the reduction in height has a small positive effect on the water potential gradient between leaves and soil. Individual-based models can enhance our understanding of the regulating impact of the partial canopy loss on water balance in the combined plant-soil system.



中文翻译:

红树林部分冠层损失:通过物理适应和对孔隙水盐度的反馈来缓解缺水

红树林Avicennia属的树木种类当暴露于不利的环境条件下(例如,孔隙水盐度增加)时,会脱落冠层部分。基于个人的模型BETTINA可以根据树的立体特征量化树的用水量。因此,它提供了一种工具来模拟红树林林中植物大小与密度与孔隙水盐度之间的平衡。当模型与简单的水平衡方法结合使用时,树木的耗水量对应于从土壤中吸收的水分,并且与水通量结合使用,可以增加根部区域的盐度。海平面,潮汐制度,地下水流入和降水的年度变化对联合系统的平衡有影响。较高的盐度导致较低的电位梯度并降低植物的水分吸收。通过组合建模方法(单树模型BETTINA和简单的水平衡方法),我们研究了连续部分冠层损失对树的生存的阻尼作用。我们发现(i)树木能够减少需水量和吸收量,因此可以减少树木对土壤水盐分的影响;(ii)减少的树枝长度导致木质部流动阻力降低,以及(iii)减少高度对叶片和土壤之间的水势梯度有很小的积极影响。基于个体的模型可以增强我们对部分冠层损失对植物-土壤组合系统中水平衡的调节影响的理解。我们发现(i)树木能够减少需水量和吸收量,因此可以减少树木对土壤水盐分的影响;(ii)减少的树枝长度导致木质部流动阻力降低,以及(iii)减少高度对叶片和土壤之间的水势梯度有很小的积极影响。基于个体的模型可以增强我们对部分冠层损失对植物-土壤组合系统中水平衡的调节影响的理解。我们发现(i)树木能够减少需水量和吸收量,因此可以减少树木对土壤水盐分的影响;(ii)减少的树枝长度导致木质部流动阻力降低,以及(iii)减少高度对叶片和土壤之间的水势梯度有很小的积极影响。基于个体的模型可以增强我们对部分冠层损失对植物-土壤组合系统中水平衡的调节影响的理解。

更新日期:2020-04-29
down
wechat
bug