当前位置: X-MOL 学术mBio › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural Analysis of an l-Cysteine Desulfurase from an Ssp DNA Phosphorothioation System.
mBio ( IF 5.1 ) Pub Date : 2020-04-28 , DOI: 10.1128/mbio.00488-20
Liqiong Liu 1, 2, 3, 4 , Susu Jiang 3, 4 , Mai Xing 3, 4 , Chao Chen 2, 3, 4 , Chongde Lai 5 , Na Li 6 , Guangfeng Liu 6 , Dan Wu 3 , Haiyan Gao 3 , Liang Hong 7 , Pan Tan 7 , Shi Chen 2, 3, 4 , Zixin Deng 1, 3 , Geng Wu 8 , Lianrong Wang 3, 4, 9
Affiliation  

DNA phosphorothioate (PT) modification, in which the nonbridging oxygen in the sugar-phosphate backbone is substituted by sulfur, is catalyzed by DndABCDE or SspABCD in a double-stranded or single-stranded manner, respectively. In Dnd and Ssp systems, mobilization of sulfur in PT formation starts with the activation of the sulfur atom of cysteine catalyzed by the DndA and SspA cysteine desulfurases, respectively. Despite playing the same biochemical role, SspA cannot be functionally replaced by DndA, indicating its unique physiological properties. In this study, we solved the crystal structure of Vibrio cyclitrophicus SspA in complex with its natural substrate, cysteine, and cofactor, pyridoxal phosphate (PLP), at a resolution of 1.80 Å. Our solved structure revealed the molecular mechanism that SspA employs to recognize its cysteine substrate and PLP cofactor, suggesting a common binding mode shared by cysteine desulfurases. In addition, although the distance between the catalytic Cys314 and the substrate cysteine is 8.9 Å, which is too far for direct interaction, our structural modeling and biochemical analysis revealed a conformational change in the active site region toward the cysteine substrate to move them close to each other to facilitate the nucleophilic attack. Finally, the pulldown analysis showed that SspA could form a complex with SspD, an ATP pyrophosphatase, suggesting that SspD might potentially accept the activated sulfur atom directly from SspA, providing further insights into the biochemical pathway of Ssp-mediated PT modification.IMPORTANCE Apart from its roles in Fe-S cluster assembly, tRNA thiolation, and sulfur-containing cofactor biosynthesis, cysteine desulfurase serves as a sulfur donor in the DNA PT modification, in which a sulfur atom substitutes a nonbridging oxygen in the DNA phosphodiester backbone. The initial sulfur mobilization from l-cysteine is catalyzed by the SspA cysteine desulfurase in the SspABCD-mediated DNA PT modification system. By determining the crystal structure of SspA, the study presents the molecular mechanism that SspA employs to recognize its cysteine substrate and PLP cofactor. To overcome the long distance (8.9 Å) between the catalytic Cys314 and the cysteine substrate, a conformational change occurs to bring Cys314 to the vicinity of the substrate, allowing for nucleophilic attack.

中文翻译:

来自Ssp DNA磷酸硫代磷酸化系统的半胱氨酸脱硫酶的结构分析。

DndABCDE或SspABCD分别以双链或单链方式催化DNA硫代磷酸酯(PT)修饰,其中糖-磷酸骨架中的非桥连氧被硫取代。在Dnd和Ssp系统中,PT形成中硫的动员分别由DndA和SspA半胱氨酸脱硫酶催化的半胱氨酸硫原子的活化开始。尽管发挥了相同的生化作用,但SspA不能在功能上被DndA取代,表明其独特的生理特性。在这项研究中,我们以天然底物半胱氨酸和辅因子磷酸吡ido醛(PLP)的复合物解决了环孢菌弧菌SspA的晶体结构,分辨率为1.80Å。我们解析的结构揭示了SspA用来识别其半胱氨酸底物和PLP辅助因子的分子机制,这表明半胱氨酸脱硫酶共有一个常见的结合模式。此外,尽管催化Cys314与底物半胱氨酸之间的距离为8.9Å,对于直接相互作用而言仍太远,但我们的结构模型和生化分析表明,活性位点区域向半胱氨酸底物构象变化,使它们接近半胱氨酸。互相促进亲核攻击。最后,下拉分析表明SspA可以与SspD(一种ATP焦磷酸酶)形成复合物,这表明SspD可能直接从SspA接受活化的硫原子,从而为Ssp介导的PT修饰的生化途径提供了进一步的见识。重要事项除了在Fe-S簇组装,tRNA硫醇化和含硫辅因子生物合成中的作用外,半胱氨酸脱硫酶还可以作为DNA PT修饰中的硫供体,其中硫原子取代了DNA磷酸二酯主链中的非桥接氧。在SspABCD介导的DNA PT修饰系统中,SspA半胱氨酸脱硫酶催化了L-半胱氨酸的初始硫转移。通过确定SspA的晶体结构,该研究提出了SspA用来识别其半胱氨酸底物和PLP辅因子的分子机制。为了克服催化Cys314和半胱氨酸底物之间的长距离(8.9Å),发生构象变化,使Cys314到达底物附近,从而允许亲核攻击。通过半胱氨酸脱硫酶和含硫辅因子的生物合成,在DNA PT修饰中作为硫供体,其中硫原子取代了DNA磷酸二酯主链中的非桥连氧。在SspABCD介导的DNA PT修饰系统中,SspA半胱氨酸脱硫酶催化了L-半胱氨酸的初始硫转移。通过确定SspA的晶体结构,该研究提出了SspA用来识别其半胱氨酸底物和PLP辅因子的分子机制。为了克服催化Cys314和半胱氨酸底物之间的长距离(8.9Å),发生构象变化,使Cys314到达底物附近,从而允许亲核攻击。通过半胱氨酸脱硫酶和含硫辅因子的生物合成,在DNA PT修饰中作为硫供体,其中硫原子取代了DNA磷酸二酯主链中的非桥连氧。在SspABCD介导的DNA PT修饰系统中,SspA半胱氨酸脱硫酶催化了L-半胱氨酸的初始硫转移。通过确定SspA的晶体结构,该研究提出了SspA用来识别其半胱氨酸底物和PLP辅因子的分子机制。为了克服催化Cys314与半胱氨酸底物之间的长距离(8.9Å),发生构象变化,使Cys314到达底物附近,从而允许亲核攻击。其中硫原子取代了DNA磷酸二酯主链中的非桥连氧。在SspABCD介导的DNA PT修饰系统中,SspA半胱氨酸脱硫酶催化了L-半胱氨酸的初始硫转移。通过确定SspA的晶体结构,该研究提出了SspA用来识别其半胱氨酸底物和PLP辅因子的分子机制。为了克服催化Cys314和半胱氨酸底物之间的长距离(8.9Å),发生构象变化,使Cys314到达底物附近,从而允许亲核攻击。其中硫原子取代了DNA磷酸二酯主链中的非桥连氧。在SspABCD介导的DNA PT修饰系统中,SspA半胱氨酸脱硫酶催化了L-半胱氨酸的初始硫转移。通过确定SspA的晶体结构,该研究提出了SspA用来识别其半胱氨酸底物和PLP辅因子的分子机制。为了克服催化Cys314和半胱氨酸底物之间的长距离(8.9Å),发生构象变化,使Cys314到达底物附近,从而允许亲核攻击。通过确定SspA的晶体结构,该研究提出了SspA用来识别其半胱氨酸底物和PLP辅因子的分子机制。为了克服催化Cys314和半胱氨酸底物之间的长距离(8.9Å),发生构象变化,使Cys314到达底物附近,从而允许亲核攻击。通过确定SspA的晶体结构,该研究提出了SspA用来识别其半胱氨酸底物和PLP辅因子的分子机制。为了克服催化Cys314和半胱氨酸底物之间的长距离(8.9Å),发生构象变化,使Cys314到达底物附近,从而允许亲核攻击。
更新日期:2020-04-28
down
wechat
bug