当前位置: X-MOL 学术Commun. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrostatic superlattices on scaled graphene lattices
Communications Physics ( IF 5.5 ) Pub Date : 2020-04-28 , DOI: 10.1038/s42005-020-0335-1
Szu-Chao Chen , Rainer Kraft , Romain Danneau , Klaus Richter , Ming-Hao Liu

Electrostatic superlattices have been known to significantly modify the electronic structure of low-dimensional materials. Studies of graphene superlattices were triggered by the discovery of moiré patterns in van der Waals stacks of graphene and hexagonal boron nitride (hBN) layers a few years ago. Very recently, gate-controllable superlattices using spatially modulated gate oxides have been achieved, allowing for Dirac band structure engineering of graphene. Despite these rapid experimental progresses, technical advances in quantum transport simulations for large-scale graphene superlattices have been relatively limited. Here, we show that transport experiments for both graphene/hBN moiré superlattices and gate-controllable superlattices can be well reproduced by transport simulations based on a scalable tight-binding model. Our finding paves the way to tuning-parameter-free quantum transport simulations for graphene superlattices, providing reliable guides for understanding and predicting novel electric properties of complex graphene superlattice devices.



中文翻译:

缩放石墨烯晶格上的静电超晶格

已知静电超晶格会显着改变低维材料的电子结构。几年前在范德华(van der Waals)的石墨烯和六方氮化硼(hBN)层中发现了莫尔条纹,从而引发了石墨烯超晶格的研究。最近,已经实现了使用空间调制的栅极氧化物的栅极可控超晶格,从而可以进行石墨烯的Dirac能带结构工程。尽管这些实验取得了迅速的进展,但是大规模石墨烯超晶格的量子输运模拟中的技术进步相对有限。在这里,我们表明,基于可伸缩紧密结合模型的传输模拟可以很好地重现石墨烯/ hBN莫尔条纹超晶格和门控超晶格的传输实验。

更新日期:2020-04-28
down
wechat
bug