当前位置: X-MOL 学术J. Adv. Model. Earth Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tropical Cyclogenesis From Self‐Aggregated Convection in Numerical Simulations of Rotating Radiative‐Convective Equilibrium
Journal of Advances in Modeling Earth Systems ( IF 4.4 ) Pub Date : 2020-05-06 , DOI: 10.1029/2019ms002020
Jacob D. Carstens 1 , Allison A. Wing 1
Affiliation  

In a modeled environment of rotating radiative‐convective equilibrium (RCE), convective self‐aggregation may take the form of spontaneous tropical cyclogenesis. We investigate the processes leading to tropical cyclogenesis in idealized simulations with a three‐dimensional cloud‐permitting model configured in rotating RCE, in which the background planetary vorticity is varied across f‐plane cases to represent a range of deep tropical and near‐equatorial environments. Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic‐scale forcing. We examine the dynamic and thermodynamic evolution of cyclogenesis in these experiments and compare the physical mechanisms to current theories. All simulations with planetary vorticity corresponding to latitudes from 10°–20° generate intense tropical cyclones, with maximum wind speeds of 80 m s−1 or above. Time to genesis varies widely, even within a five‐member ensemble of 20° simulations, indicating large stochastic variability. Shared across the 10°–20° group is the emergence of a midlevel vortex in the days leading to genesis, which has dynamic and thermodynamic implications on its environment that facilitate the spin‐up of a low‐level vortex. Tropical cyclogenesis is possible in this model at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self‐aggregates into a quasicircular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by strong near‐surface inflow that is already established days prior. Other experiments at these lower Coriolis parameters instead self‐aggregate into a nonrotating elongated band and fail to undergo cyclogenesis over the 100‐day simulation.

中文翻译:

辐射对流旋转平衡数值模拟中自聚集对流的热带气旋

在旋转辐射对流平衡(RCE)的模拟环境中,对流自聚集可能采取自发热带回旋作用的形式。我们使用在旋转RCE中配置的三维云许可模型在理想化的模拟中研究导致热带气旋发生的过程,其中背景行星涡度在f平面案例代表了一系列深热带和近赤道环境。对流在没有背景风,前驱物干扰或其他天气尺度强迫的情况下在其他均质的环境中随机初始化。我们在这些实验中研究了环发生的动态和热力学演变,并将物理机理与当前理论进行了比较。所有具有对应于10°–20°纬度的行星涡度的模拟都会产生强烈的热带气旋,最大风速为80 m s -1或以上。生成时间差异很大,即使在20度模拟的五人合奏中也是如此,这表明随机变异性很大。在10°–20°组中共有一个中层涡流在导致成因的时代出现,这对环境产生了动态和热力学影响,从而促进了低层涡旋的旋转。在该模型中,热带回旋可能在科里奥利参数值低至代表1°的情况下发生。在这些实验中,对流自聚集成准圆形星团,然后开始旋转并逐渐增强为热带风暴,这是在几天前已经建立的强近地表流入的帮助下进行的。
更新日期:2020-05-06
down
wechat
bug