当前位置: X-MOL 学术J. Nanobiotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G@PDA superparticles.
Journal of Nanobiotechnology ( IF 10.6 ) Pub Date : 2020-04-25 , DOI: 10.1186/s12951-020-00621-6
Yang Wang 1 , Binxi Li 2 , Hao Xu 3 , Shulin Du 2 , Ting Liu 4 , Jingyan Ren 1 , Jiayi Zhang 1 , Hao Zhang 2 , Yi Liu 2 , Laijin Lu 1
Affiliation  

BACKGROUND The primary strategy to repair peripheral nerve injuries is to bridge the lesions by promoting axon regeneration. Thus, the ability to direct and manipulate neuronal cell axon regeneration has been one of the top priorities in the field of neuroscience. A recent innovative approach for remotely guiding neuronal regeneration is to incorporate magnetic nanoparticles (MNPs) into cells and transfer the resulting MNP-loaded cells into a magnetically sensitive environment to respond to an external magnetic field. To realize this intention, the synthesis and preparation of ideal MNPs is an important challenge to overcome. RESULTS In this study, we designed and prepared novel fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G@polydopamine superparticles (FMSPs) as neural regeneration therapeutics. With the help of their excellent biocompatibility and ability to interact with neural cells, our in-house fabricated FMSPs can be endocytosed into cells, transported along the axons, and then aggregated in the growth cones. As a result, the mechanical forces generated by FMSPs can promote the growth and elongation of axons and stimulate gene expression associated with neuron growth under external magnetic fields. CONCLUSIONS Our work demonstrates that FMSPs can be used as a novel stimulator to promote noninvasive neural regeneration through cell magnetic actuation.

中文翻译:

通过荧光磁性双功能 Fe3O4·罗丹明 6G@PDA 超粒子介导的机械张力使轴突生长和伸长。

背景修复周围神经损伤的主要策略是通过促进轴突再生来桥接损伤。因此,指导和操纵神经元细胞轴突再生的能力一直是神经科学领域的首要任务之一。最近一种用于远程引导神经元再生的创新方法是将磁性纳米粒子 (MNP) 纳入细胞,并将生成的装载有 MNP 的细胞转移到磁敏感环境中以响应外部磁场。为了实现这一意图,理想的 MNPs 的合成和制备是一个需要克服的重要挑战。结果在本研究中,我们设计并制备了新型荧光磁性双功能Fe3O4·罗丹明6G@聚多巴胺超粒子(FMSPs)作为神经再生疗法。凭借其出色的生物相容性和与神经细胞相互作用的能力,我们内部制造的 FMSP 可以被内吞到细胞中,沿着轴突运输,然后聚集在生长锥中。因此,FMSPs 产生的机械力可以促进轴突的生长和伸长,并刺激与外部磁场下神经元生长相关的基因表达。结论我们的工作表明,FMSPs 可以用作一种新型刺激剂,通过细胞磁驱动促进非侵入性神经再生。FMSPs 产生的机械力可以促进轴突的生长和伸长,并在外部磁场下刺激与神经元生长相关的基因表达。结论我们的工作表明,FMSPs 可以用作一种新型刺激剂,通过细胞磁驱动促进非侵入性神经再生。FMSPs 产生的机械力可以促进轴突的生长和伸长,并在外部磁场下刺激与神经元生长相关的基因表达。结论我们的工作表明,FMSPs 可以用作一种新型刺激剂,通过细胞磁驱动促进非侵入性神经再生。
更新日期:2020-04-25
down
wechat
bug