当前位置: X-MOL 学术npj Micrograv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Protein structural changes on a CubeSat under rocket acceleration profile.
npj Microgravity ( IF 4.4 ) Pub Date : 2020-04-23 , DOI: 10.1038/s41526-020-0102-3
Autumn Luna 1 , Jacob Meisel 2 , Kaitlin Hsu 3 , Silvia Russi 4 , Daniel Fernandez 5, 6
Affiliation  

Catalyzing life-sustaining reactions, proteins are composed by 20 different amino acids that fold into a compact yet flexible three-dimensional architecture, which dictates what their function(s) might be. Determining the spatial arrangement of the atoms, the protein's 3D structure, enables key advances in fundamental and applied research. Protein crystallization is a powerful technique to achieve this. Unlike Earth's crystallization experiments, biomolecular crystallization in space in the absence of gravitational force is actively sought to improve crystal growth techniques. However, the effects of changing gravitational vectors on a protein solution reaching supersaturation remain largely unknown. Here, we have developed a low-cost crystallization cell within a CubeSat payload module to exploit the unique experimental conditions set aboard a sounding rocket. We designed a biaxial gimbal to house the crystallization experiments and take measurements on the protein solution in-flight with a spectrophotometry system. After flight, we used X-ray diffraction analysis to determine that flown protein has a structural rearrangement marked by loss of the protein's water and sodium in a manner that differs from crystals grown on the ground. We finally show that our gimbal payload module design is a portable experimental setup to take laboratory research investigations into exploratory space flights.

中文翻译:


立方体卫星在火箭加速曲线下的蛋白质结构变化。



蛋白质由 20 种不同的氨基酸组成,可催化维持生命的反应,这些氨基酸折叠成紧凑而灵活的三维结构,这决定了它们的功能。确定原子的空间排列(蛋白质的 3D 结构)可以在基础和应用研究方面取得关键进展。蛋白质结晶是实现这一目标的强大技术。与地球的结晶实验不同,人们积极寻求在没有重力的情况下在太空中进行生物分子结晶,以改进晶体生长技术。然而,改变重力矢量对达到过饱和的蛋白质溶液的影响仍然很大程度上未知。在这里,我们在立方体卫星有效载荷模块内开发了一种低成本结晶单元,以利用探空火箭上设置的独特实验条件。我们设计了一个双轴万向节来进行结晶实验,并使用分光光度系统对飞行中的蛋白质溶液进行测量。飞行后,我们使用 X 射线衍射分析来确定飞行的蛋白质具有结构重排,其特征是蛋白质的水和钠的损失,其方式与地面上生长的晶体不同。我们最终表明,我们的万向节有效载荷模块设计是一种便携式实验装置,可对探索性太空飞行进行实验室研究调查。
更新日期:2020-04-24
down
wechat
bug