当前位置: X-MOL 学术J. Geod. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method
Journal of Geodesy ( IF 3.9 ) Pub Date : 2020-04-23 , DOI: 10.1007/s00190-020-01374-8
Yuedong Wang , Zefa Yang , Zhiwei Li , Jianjun Zhu , Lixin Wu

Interferometric synthetic aperture radar (InSAR) technology can be used to observe high spatial resolution one-dimensional (1-D) deformation along the line-of-sight direction from a single-track synthetic aperture radar (SAR) dataset. With the aid of multi-track InSAR data or a prior model, InSAR can be extended to infer 3-D deformation information, but the temporal resolution is generally limited. This paper presents an InSAR-based method to retrieve high spatio-temporal resolution 3-D displacements over mining areas (hereafter referred to as the MTI-based method). The core idea of the proposed method is to enhance the temporal resolution of the time-series 3-D displacement estimates by fusing multi-track InSAR observations and a prior model. Firstly, we retrieve high spatial resolution 3-D mining displacements from single-track InSAR 1-D deformation observations, with the assistance of the prior deformation model. By applying this approach to multi-track InSAR data over the same area, we obtain much denser 3-D mining displacement samples in time than those derived from a single-track InSAR dataset. Secondly, we propose a generalized weighted least-squares method to integrate the denser 3-D displacement samples, to solve the high temporal resolution 3-D mining displacements, in which the rank deficiency needs to be tackled. Finally, time-series 3-D mining displacements at the chronological dates of all the available multi-track SAR images are estimated. The Yungang coal mining area of China was selected to test the proposed method using two adjacent-track ALOS PALSAR-1 datasets. Compared with the single-track InSAR-derived results, the proposed method not only significantly improves the temporal resolution of the monitoring results by 42.6%, obtaining more detailed 3-D displacements, but it also provides important data support for understanding and modeling the distinctive kinematics of mining deformation and assessing mining-related geohazards. What is more, the core idea of the proposed method will be beneficial to high spatio-temporal resolution 3-D deformation estimation in other geophysical processes.
更新日期:2020-04-23
down
wechat
bug