当前位置: X-MOL 学术J. Taiwan Inst. Chem. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solid state reaction-enabled in situ construction of ultrafine CoS nanoparticles encapsulated within heteroatom-doped carbon scaffold for high performance sodium-ion batteries
Journal of the Taiwan Institute of Chemical Engineers ( IF 5.5 ) Pub Date : 2020-04-23 , DOI: 10.1016/j.jtice.2020.03.008
Sangxin Liu , Zhuangzhuang Wang , Qirui Hou , Xiaofang Zhang , Anping Zhang , Licui Zhang , Ping Wu , Xiaoshu Zhu , Shaohua Wei , Yiming Zhou

Developing an efficient and reliable method for achieving high-yield and high-quality synthesis of transition metal sulfides combined with carbonaceous materials is highly desirable but still challenging. Herein, a very simple and cost-effective solid state reaction method for the fabrication of ultrafine CoS nanoparticles encapsulated within heteroatom-doped carbon scaffold is presented. By directly grinding cobalt acetate tetrahydrate, o-vanillin and o-phenylenediamine together with a molar ratio of 1:2:1 at ambient temperature in the presence of sulfur powder, a self-assembly solid state reaction took place to give rise to a bis-Schiff base complex with cobalt (II), which was evenly distributed in the sulfur powder surroundings. After subsequent annealing at elevated temperature, simultaneous carbonization and sulfidization occurred, resulting to the in-situ formation of ultrafine CoS nanoparticles (∼3.8 nm) encapsulated within an irregular N, S-codoped carbon scaffold (denoted as CoS⊂NSC). When evaluated as an anode material for sodium-ion batteries (SIBs), the CoS⊂NSC hybrid exhibits good cycling stability (305.6 mA h g−1 after 400 cycles at 100 mA g−1) and excellent rate capability (412.3 and 263.3 mA h g−1 at current densities of 200 and 5000 mA g−1, respectively), demonstrating exceptional electrochemical sodium storage performances. The findings in this work pave a novel way to synthesize the promising anode materials for high performance SIBs.



中文翻译:

固态反应可原位构建包裹在杂原子掺杂碳支架中的超细CoS纳米颗粒,用于高性能钠离子电池

迫切需要开发一种高效可靠的方法,以实现与碳质材料结合的过渡金属硫化物的高产率和高质量合成,但仍具有挑战性。在此,提出了一种非常简单且具有成本效益的固态反应方法,用于制造包裹在掺杂杂原子的碳支架中的超细CoS纳米颗粒。通过直接研磨四水合醋酸钴,香草醛和-苯二胺与硫粉存在下于环境温度下以1:2:1的摩尔比进行的自组装固态反应生成了具有钴(II)的双席夫碱配合物,该配合物为均匀分布在硫磺粉周围。随后在高温下退火后,同时发生碳化和硫化,导致原位形成超细CoS纳米颗粒(约3.8 nm),包裹在不规则的N,S掺杂的碳支架(表示为CoS⊂NSC)中。当用作钠离子电池(SIBS),所述CoS⊂NSC混合表现出良好的循环稳定性的阳极材料进行评价(305.6毫安汞柱-1在100mA克400次循环后-1和优异的倍率性能(412.3和263.3毫安汞柱)-1电流密度分别为200和5000 mA g -1时),证明了出色的电化学钠存储性能。这项工作中的发现为合成用于高性能SIB的有前途的阳极材料铺平了一条新途径。

更新日期:2020-04-23
down
wechat
bug