当前位置: X-MOL 学术Robot. Comput.-Integr. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Virtual and physical prototyping of a beam-based variable stiffness actuator for safe human-machine interaction
Robotics and Computer-Integrated Manufacturing ( IF 9.1 ) Pub Date : 2020-04-22 , DOI: 10.1016/j.rcim.2019.101886
Pietro Bilancia , Giovanni Berselli , Gianluca Palli

This paper reports about the virtual and physical prototyping of an antagonistic Variable Stiffness Actuator (VSA) to be used on robotic arms specifically realized for physical human-robot interaction. Such antagonistic actuation system, which comprises purposely conceived Compliant Transmission Elements (CTEs) characterized by a nonlinear relation between the deflection and the applied torque, allows to simultaneously control both the joint’s position and stiffness. The CTE’s beams geometry, namely slender spline beams, has been defined by means of an automatic routine leveraging on Matlab and ANSYS and allowing for the shape optimization of complex flexures. The synthesized springs are characterized by a predefined quadratic torque-deflection characteristic, which is shown to guarantee a precise stiffness modulation while avoiding the need for a joint’s position sensor. After shape optimization, the CTE is fabricated via additive manufacturing and subsequently tested. The acquired data show a very good consistency with the numerical results, although highlighting a non-negligible hysteresis due to material damping. Therefore, in order to cope with such unavoidable effect along with other parameter uncertainties and unmodeled effects (e.g. static friction), a robust feedback controller is proposed, allowing for the simultaneous and decoupled regulation of joint position and stiffness. Finally, a VSA prototype is produced and tested. Experimental results confirm that the VSA behaves as expected.



中文翻译:

基于梁的可变刚度执行器的虚拟和物理原型,用于安全的人机交互

本文报道了针对可变可变刚度执行器(VSA)的虚拟和物理原型,该可变可变致动器用于专门用于人机交互的机器人手臂。这种对抗性致动系统包括特意构想的,以挠度和所施加扭矩之间的非线性关系为特征的柔顺传动元件(CTE),它可以同时控制关节的位置和刚度。CTE的梁几何形状,即细长的花键梁,已通过利用Matlab和ANSYS进行自动例行程序定义,并允许对复杂挠曲的形状进行优化。合成弹簧的特征在于预定义的二次扭矩偏转特性,可以保证精确的刚度调制,同时又不需要关节的位置传感器。在形状优化之后,通过增材制造来制造CTE,然后进行测试。所获取的数据显示出与数值结果非常好的一致性,尽管突出了由于材料阻尼引起的不可忽略的磁滞。因此,为了应对这种不可避免的影响以及其他参数不确定性和未建模的影响(例如,静摩擦),提出了一种鲁棒的反馈控制器,允许同时和解耦调节关节位置和刚度。最后,生产并测试了VSA原型。实验结果证实了VSA的行为符合预期。CTE是通过增材制造制造的,并随后进行了测试。所获取的数据显示出与数值结果非常好的一致性,尽管突出了由于材料阻尼引起的不可忽略的磁滞。因此,为了应对这种不可避免的影响以及其他参数不确定性和未建模的影响(例如,静摩擦),提出了一种鲁棒的反馈控制器,允许同时和解耦调节关节位置和刚度。最后,生产并测试了VSA原型。实验结果证实了VSA的行为符合预期。CTE是通过增材制造制造的,并随后进行了测试。所获取的数据显示出与数值结果非常好的一致性,尽管突出了由于材料阻尼引起的不可忽略的磁滞。因此,为了应对这种不可避免的影响以及其他参数不确定性和未建模的影响(例如,静摩擦),提出了一种鲁棒的反馈控制器,允许同时和解耦调节关节位置和刚度。最后,生产并测试了VSA原型。实验结果证实了VSA的行为符合预期。为了应对这种不可避免的影响以及其他参数不确定性和未建模的影响(例如静摩擦),提出了一种鲁棒的反馈控制器,允许同时和解耦调节关节位置和刚度。最后,生产并测试了VSA原型。实验结果证实了VSA的行为符合预期。为了应对这种不可避免的影响以及其他参数不确定性和未建模的影响(例如静摩擦),提出了一种鲁棒的反馈控制器,允许同时和解耦调节关节位置和刚度。最后,生产并测试了VSA原型。实验结果证实了VSA的行为符合预期。

更新日期:2020-04-22
down
wechat
bug