当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting O2•− Photogeneration via Promoting Intersystem‐Crossing and Electron‐Donating Efficiency of Aza‐BODIPY‐Based Nanoplatforms for Hypoxic‐Tumor Photodynamic Therapy
Small Methods ( IF 10.7 ) Pub Date : 2020-04-19 , DOI: 10.1002/smtd.202000013
Dapeng Chen 1 , Zhichao Wang 1 , Hanming Dai 1 , Xinyi Lv 1 , Qianli Ma 1 , Da‐Peng Yang 2 , Jinjun Shao 1 , Zhigang Xu 3 , Xiaochen Dong 1, 4
Affiliation  

Tumor hypoxia severely impedes the therapeutic efficacy of type II photodynamic therapy (PDT) depending on singlet oxygen (1O2) generation. To combat hypoxic tumors, herein, a new approach is devised to boost superoxide radical (O2•−) photogeneration for type I PDT. Heavy atoms are introduced onto aza‐BODIPY molecules (iodine substituted butoxy‐aza‐BODIPY, IBAB) to promote their intersystem‐crossing (ISC) ability. Meanwhile, methoxy‐poly(ethylene glycol)‐b‐poly(2‐(diisopropylamino) ethyl methacrylate) (mPEG‐PPDA) with enhanced electron‐donating efficiency is employed as a coating matrix to encapsulate IBAB, thereby obtaining amphiphilic aza‐BODIPY nanoplatforms (PPIAB NPs). Under irradiation, triplet‐state IBAB in PPIAB NPs is efficiently generated from singlet state favored by the elevated ISC ability. The electron‐rich environment provided by mPEG‐PPDA can donate triplet‐state IBAB with one electron to form charge‐separated‐state IBAB, which in turn transfers electron to O2 for O2•− production. Significantly, owing to recyclable O2 generated by disproportionation or Harber–Weiss/Fenton reaction, prominent O2•− is generated by PPIAB NPs even in a severe hypoxic environment (2% O2), enabling superior therapeutic efficacy (96.2% tumor‐inhibition rate) over NPs not following this strategy. Thus, the proof‐of‐concept design of ISC‐enhanced and electron‐rich polymer encapsulating PPIAB NPs illuminates the path to preparing O2•− photogenerator for hypoxic cancer treatment.

中文翻译:

通过促进基于氮杂-BODIPY的纳米平台的低氧肿瘤光动力疗法的系统间交叉和电子识别效率,促进O2•-光生。

肿瘤缺氧严重阻碍了根据单线态氧(1 O 2)产生的II型光动力疗法(PDT)的治疗效果。为了对抗缺氧性肿瘤,本文设计了一种新的方法来增强I型PDT的超氧自由基(O 2 •-)光生。将重原子引入到aza-BODIPY分子(碘取代的丁氧基aza-BODIPY,IBAB)上,以增强其系统间穿越(ISC)能力。同时,甲氧基-聚(乙二醇)-b具有增强的供电子效率的聚(2-(二异丙基氨基)乙基甲基丙烯酸乙酯)(mPEG-PPDA)被用作包衣基质来包裹IBAB,从而获得两亲性的aza-BODIPY纳米平台(PPIAB NPs)。在辐照下,PPIAB NPs中的三重态IBAB可以有效地从提高ISC能力的单重态生成。mPEG-PPDA提供的富电子环境可以将一个电子带给三重态IBAB,以形成电荷分离态IBAB,后者又将电子转移到O 2生成O 2 。显着地,由于歧化反应或Harber-Weiss / Fenton反应产生的可循环利用的O 2,突出的O 2 •-即使在严重缺氧的环境中(2%O 2),PPIAB NP仍可产生此类药物,与不遵循该策略的NP相比,具有更高的治疗效果(96.2%的肿瘤抑制率)。因此,ISAC增强和富电子聚合物封装PPIAB NP的概念验证设计,为制备用于低氧癌症治疗的O 2 •-光生剂提供了途径。
更新日期:2020-04-19
down
wechat
bug