当前位置: X-MOL 学术Int. J. Quantum Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational insights of two‐dimensional infrared spectroscopy under electric fields in phosphorylcholine
International Journal of Quantum Chemistry ( IF 2.3 ) Pub Date : 2020-04-20 , DOI: 10.1002/qua.26169
Hai Chao Ren 1, 2 , Jiao Nan Yuan 3 , Tu Nan Chen 4 , Gurudeeban Selvaraj 5 , Satyavani Kaliamurthi 5 , Xiu Qing Zhang 2, 6 , Dong‐Qing Wei 5, 7 , Guang Fu Ji 2 , Zeng Ming Zhang 1
Affiliation  

Influence of static electric field in biological cells causes electroporation, which results in the increase of permeability of the cells and phospholipid bilayer. However, the precise mode of action of electric fields on phospholipid bilayer and their quantum mechanics are still unclear. Therefore, to understand the quantum‐based biological effect, we aimed to study two‐dimensional infrared (2D‐IR) spectra‐adopted quantum mechanics/molecular mechanics (QM/MM) simulations under the influence of static electric fields on Phosphorylcholine, an important component in phospholipid membrane. Initially, QM/MM studies were performed under the influence of electric field, ranging from −1.543 to 1.028 V/nm. A multilayer ONIOM model (in combination with DFT/B3LYP/6‐31G [d, p] and DREIDING force fields) was used to obtain 2D‐IR simulated spectra to calculate electrostatic interaction in the biological system. The results demonstrated that the phosphate group played an important role on α‐rotation in LUMO and the chlorine atom had a major contribution in HOMO. In addition, decreased number of hydrogen bonds demonstrated that uncoupling reaction of the P‐O stretching vibrations while the electric field was −1.542 V/nm. Moreover, we observed that the electric field is −1.028 V/nm, there is no rotational isomerization in phosphorylcholine. We concluded that the static electric fields significantly affect the anharmonic frequencies, vibration coupling and the structure of the phosphorylcholine.

中文翻译:

磷酸胆碱在电场作用下二维红外光谱的计算见解

静电场在生物细胞中的影响导致电穿孔,从而导致细胞和磷脂双层的通透性增加。但是,尚不清楚电场对磷脂双层的精确作用方式及其量子力学。因此,为了了解基于量子的生物效应,我们旨在研究在静电电场对磷酸胆碱的影响下,二维红外(2D-IR)光谱采用的量子力学/分子力学(QM / MM)模拟。磷脂膜中的成分。最初,在-1.543至1.028 V / nm的电场影响下进行QM / MM研究。多层ONIOM模型(与DFT / B3LYP / 6-31G [d,p]和DREIDING力场)用于获得2D-IR模拟光谱,以计算生物系统中的静电相互作用。结果表明,磷酸基团对LUMO的α旋转起重要作用,而氯原子对HOMO的贡献很大。此外,减少的氢键数量表明,当电场为-1.542 V / nm时,P-O拉伸振动的解偶联反应。此外,我们观察到电场为-1.028 V / nm,磷酰胆碱中没有旋转异构化。我们得出的结论是,静电电场会显着影响非谐频率,振动耦合和磷酸胆碱的结构。结果表明,磷酸基团对LUMO的α旋转起重要作用,而氯原子对HOMO的贡献很大。此外,减少的氢键数量表明,当电场为-1.542 V / nm时,P-O拉伸振动的解偶联反应。此外,我们观察到电场为-1.028 V / nm,磷酰胆碱中没有旋转异构化。我们得出的结论是,静电电场会显着影响非谐频率,振动耦合和磷酸胆碱的结构。结果表明,磷酸基团在LUMO中的α旋转中起重要作用,而氯原子在HOMO中起主要作用。此外,减少的氢键数目表明,当电场为-1.542 V / nm时,P-O拉伸振动的解偶联反应。此外,我们观察到电场为-1.028 V / nm,磷酰胆碱中没有旋转异构化。我们得出的结论是,静电场会显着影响非谐频率,振动耦合和磷酰胆碱的结构。我们观察到电场为-1.028 V / nm,磷酰胆碱中没有旋转异构化。我们得出的结论是,静电场会显着影响非谐频率,振动耦合和磷酰胆碱的结构。我们观察到电场为-1.028 V / nm,磷酰胆碱中没有旋转异构化。我们得出的结论是,静电电场会显着影响非谐频率,振动耦合和磷酸胆碱的结构。
更新日期:2020-04-20
down
wechat
bug