当前位置: X-MOL 学术Freshwater Biol. › 论文详情
Linking intraspecific variability in trophic and functional niches along an environmental gradient
Freshwater Biology ( IF 3.835 ) Pub Date : 2020-04-20 , DOI: 10.1111/fwb.13508
Allan Raffard; Frédéric Santoul; Simon Blanchet; Julien Cucherousset

Intraspecific trophic variability has important ecological and evolutionary implications, and is driven by multiple interacting factors. Functional traits and environmental conditions are important in mediating the trophic niche of individuals because they determine their ability to consume certain prey, their energetic requirements, and resource availability. In this study, we aimed at investigating the interacting effects of functional traits and environmental conditions on several attributes of trophic niche in natural populations. Here, we quantified intraspecific variability in the trophic niche of 12 riverine populations of European minnow (Phoxinus phoxinus) using stable isotope analyses. Functional traits (i.e. morpho‐anatomical traits) and environmental conditions (i.e. upstream–downstream gradient, forest cover) were quantified to identify the determinants of (1) trophic position and resource origin, (2) trophic niche size, and (3) trophic differentiation (β‐diversity) among populations. We demonstrated that trophic position and resource origin covaried with functional traits related to body size and locomotion performance, and that the strength and shape of these relationships varied according to local environmental conditions. The trophic niche size also differed among populations, although no determinant was identified. Finally, trophic β‐diversity was correlated to environmental differentiation among sites. Overall, the determinants of intraspecific variability in trophic niche appeared highly context‐dependent, and related to the interactions between functional traits and environmental conditions. Because populations are currently facing important environmental changes, understanding this context‐dependency is important for predicting food web structure and ecosystem dynamics in a changing world.
更新日期:2020-04-22

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug