当前位置: X-MOL 学术Electroanalysis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Involvement of Proton Transfer for Carbon Dioxide Reduction Coupled with Extracellular Electron Uptake in Shewanella oneidensis MR‐1
Electroanalysis ( IF 3 ) Pub Date : 2020-04-19 , DOI: 10.1002/elan.201900686
Eugenio La Cava 1 , Alexis Guionet 2 , Junki Saito 2, 3 , Akihiro Okamoto 2, 4, 5
Affiliation  

Microbial biosynthesis of hydrocarbon from CO2 reduction driven by electron uptake process from the cathodic electrode has gained intensive attention in terms of potential industrial application. However, a lack of a model system for detailed studies on the mechanism of the CO2 reduction hinders the improvement in efficiency for microbial electrosynthesis. Here, we examined the mechanism of microbial CO2 reduction at the cathode by a well‐described microbe for extracellular electron uptake, Shewanella oneidensis MR‐1, capable of reducing gaseous CO2 to produce formic acid. Using whole‐cell electrochemical assay, we observed stable cathodic current production at −0.65 V vs Ag/AgCl KCl sat. associated with the introduction of CO2. The observed cathodic current was enhanced by the addition of 4 μM riboflavin, which specifically accelerates the electron uptake process of MR‐1 by the interaction to its outer‐membrane c‐type cytochromes. The significant impact of an uncoupler agent and a mutant strain of MR‐1 lacking sole F‐type ATPase suggested the importance of proton import to the cytoplasm for the cathodic CO2 reduction. The present data suggest that MR‐1 potentially serves as a model system for microbial electrosynthesis from CO2.

中文翻译:

质子转移参与二氧化碳还原反应与胞外电子吸收在Shewanella oneidensis MR-1中的关系

在潜在的工业应用方面,由阴极电极的电子吸收过程驱动的由CO 2还原产生的微生物生物合成碳得到了广泛的关注。然而,缺乏用于详细研究CO 2还原机理的模型系统阻碍了微生物电合成效率的提高。在这里,我们研究了阴极上微生物CO 2还原的机理,该微生物被描述得很好的细胞外电子吸收能力,即Shewanella oneidensis MR-1,能够还原气态CO 2产生甲酸。使用全电池电化学分析,我们观察到在相对于Ag / AgCl KCl饱和溶液-0.65 V时稳定的阴极电流产生。与引入CO 2有关。加入4μM核黄素可增强所观察到的阴极电流,该核黄素通过与MR-1的外膜c型细胞色素相互作用而特别加速了MR-1的电子吸收过程。缺乏唯一F型ATPase的解偶联剂和MR-1突变株的重大影响表明,质子输入到细胞质中对于减少阴极CO 2的重要性。目前的数据表明,MR-1可能作为CO 2微生物电合成的模型系统。
更新日期:2020-04-19
down
wechat
bug