当前位置: X-MOL 学术BMC Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quaternions as a solution to determining the angular kinematics of human movement.
BMC Biomedical Engineering Pub Date : 2020-03-23 , DOI: 10.1186/s42490-020-00039-z
John H Challis 1
Affiliation  

The three-dimensional description of rigid body kinematics is a key step in many studies in biomechanics. There are several options for describing rigid body orientation including Cardan angles, Euler angles, and quaternions; the utility of quaternions will be reviewed and elaborated. The orientation of a rigid body or a joint between rigid bodies can be described by a quaternion which consists of four variables compared with Cardan or Euler angles (which require three variables). A quaternion, q = (q0, q1, q2, q3), can be considered a rotation (Ω = 2 cos−1(q0)), about an axis defined by a unit direction vector $$ \left({q}_1/\sin \left(\frac{\Omega}{2}\right),{q}_2/\sin \left(\frac{\Omega}{2}\right),{q}_3/\sin \left(\frac{\Omega}{2}\right)\right) $$. The quaternion, compared with Cardan and Euler angles, does not suffer from singularities or Codman’s paradox. Three-dimensional angular kinematics are defined on the surface of a unit hypersphere which means numerical procedures for orientation averaging and interpolation must take account of the shape of this surface rather than assuming that Euclidean geometry based procedures are appropriate. Numerical simulations demonstrate the utility of quaternions for averaging three-dimensional orientations. In addition the use of quaternions for the interpolation of three-dimensional orientations, and for determining three-dimensional orientation derivatives is reviewed. The unambiguous nature of defining rigid body orientation in three-dimensions using a quaternion, and its simple averaging and interpolation gives it great utility for the kinematic analysis of human movement.

中文翻译:

四元数作为确定人体运动角度运动学的一种解决方案。

刚体运动学的三维描述是生物力学许多研究中的关键步骤。有多种描述刚体定向的选项,包括Cardan角,Euler角和四元数。四元数的效用将被审查和阐述。刚性体或刚性体之间的接头的方向可以用四元数来描述,该四元数由四个变量与Cardan或Euler角(需要三个变量)组成。四元数q =(q0,q1,q2,q3)可被视为围绕单位方向矢量$$ \ left({q} _1)定义的轴旋转(Ω= 2 cos-1(q0))。 / \ sin \ left(\ frac {\ Omega} {2} \ right),{q} _2 / \ sin \ left(\ frac {\ Omega} {2} \ right),{q} _3 / \ sin \ left(\ frac {\ Omega} {2} \ right)\ right)$$。与Cardan和Euler角相比,四元数 不会遭受奇异或Codman悖论的困扰。在单位超球面上定义了三维角运动学,这意味着定向平均和插值的数值过程必须考虑该表面的形状,而不是假设基于欧几里德几何的过程是合适的。数值模拟证明了四元数用于平均三维方向的效用。另外,回顾了四元数用于三维方向插值和确定三维方向导数的使用。使用四元数在三维中定义刚体定向的明确性质,以及其简单的平均和内插法,在人体运动学运动分析中具有很大的实用性。在单位超球面上定义了三维角运动学,这意味着定向平均和插值的数值过程必须考虑该表面的形状,而不是假设基于欧几里德几何的过程是合适的。数值模拟证明了四元数用于平均三维方向的效用。另外,回顾了四元数用于三维方向插值和确定三维方向导数的使用。使用四元数在三维中定义刚体定向的明确性质,以及其简单的平均和内插法,在人体运动学运动分析中具有很大的实用性。在单位超球面上定义了三维角运动学,这意味着定向平均和插值的数值过程必须考虑该表面的形状,而不是假设基于欧几里德几何的过程是合适的。数值模拟证明了四元数用于平均三维方向的效用。另外,回顾了四元数用于三维方向插值和确定三维方向导数的使用。使用四元数在三维中定义刚体定向的明确性质,以及其简单的平均和内插法,在人体运动学运动分析中具有很大的实用性。
更新日期:2020-04-22
down
wechat
bug