当前位置: X-MOL 学术IEEE Trans. Power Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combined Demand Response Delay Compensation and Adaptive Disturbance Rejection for Power System Frequency Control
IEEE Transactions on Power Systems ( IF 6.5 ) Pub Date : 2020-05-01 , DOI: 10.1109/tpwrs.2019.2957125
Seyyed Amir Hosseini , Mohammadreza Toulabi , Ahmad Salehi Dobakhshari , Alireza Ashouri-Zadeh , Ali Mohammad Ranjbar

In this paper, a modified frequency control model is proposed, where the demand response (DR) control loop is added to the traditional load frequency control (LFC) model to improve the frequency regulation of the power system. One of the main obstacles for using DR in the frequency regulation is communication delay which exists in transferring data from control center to appliances. To overcome this issue, an adaptive delay compensator (ADC) is used in order to compensate the communication delay in the control loop. In this regard, a weighted combination of several vertex compensators, whose weights are updated according to the measured delay, is employed. Generating the phase lead is the most important strategy for these compensators to eliminate the impact of communication delay. Moreover, to overcome the impact of disturbances and uncertainties in power system, an active disturbance rejection control (ADRC) is utilized as the load frequency controller. Being used instead of a PI controller, this robust controller employs an extended state observer to estimate the disturbances and uncertainties and uses a feedback controller to compensate them. The confined iterative rational Krylov algorithm (CIRKA) is employed to reduce the order of the detailed IEEE 39-bus test system model meticulously and facilitate the controller process design. Therefore, a DR control loop, ADC, and ADRC are employed in the LFC to regulate the frequency of the power system in a more efficient way. The simulation results confirm the effectiveness and robustness of the frequency control in presence of communication delay and model uncertainties.

中文翻译:

电力系统频率控制的组合需求响应延迟补偿和自适应抗扰

本文提出了一种改进的频率控制模型,在传统的负载频率控制(LFC)模型中加入了需求响应(DR)控制环,以改善电力系统的频率调节。在频率调节中使用 DR 的主要障碍之一是从控制中心向设备传输数据时存在的通信延迟。为了克服这个问题,使用自适应延迟补偿器 (ADC) 来补偿控制回路中的通信延迟。在这点上,采用几个顶点补偿器的加权组合,其权重根据测量的延迟进行更新。产生相位超前是这些补偿器消除通信延迟影响的最重要策略。而且,为了克服电力系统中扰动和不确定性的影响,自抗扰控制(ADRC)被用作负载频率控制器。这种稳健的控制器代替 PI 控制器使用,采用扩展状态观测器来估计干扰和不确定性,并使用反馈控制器来补偿它们。采用受限迭代有理Krylov算法(CIRKA),精心降低详细的IEEE 39总线测试系统模型的阶数,方便控制器过程设计。因此,在 LFC 中采用了 DR 控制回路、ADC 和 ADRC,以更有效的方式调节电源系统的频率。仿真结果证实了在存在通信延迟和模型不确定性的情况下频率控制的有效性和鲁棒性。自抗扰控制(ADRC)用作负载频率控制器。这种稳健的控制器代替 PI 控制器使用,采用扩展状态观测器来估计干扰和不确定性,并使用反馈控制器来补偿它们。采用有限迭代有理Krylov算法(CIRKA),精心降低详细的IEEE 39总线测试系统模型的阶数,方便控制器过程设计。因此,在 LFC 中采用了 DR 控制回路、ADC 和 ADRC,以更有效的方式调节电源系统的频率。仿真结果证实了在存在通信延迟和模型不确定性的情况下频率控制的有效性和鲁棒性。自抗扰控制 (ADRC) 用作负载频率控制器。这种稳健的控制器代替 PI 控制器使用,采用扩展状态观测器来估计干扰和不确定性,并使用反馈控制器来补偿它们。采用有限迭代有理Krylov算法(CIRKA),精心降低详细的IEEE 39总线测试系统模型的阶数,方便控制器过程设计。因此,在 LFC 中采用了 DR 控制回路、ADC 和 ADRC,以更有效的方式调节电源系统的频率。仿真结果证实了在存在通信延迟和模型不确定性的情况下频率控制的有效性和鲁棒性。
更新日期:2020-05-01
down
wechat
bug