当前位置: X-MOL 学术IEEE Sens. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization of a Miniaturized IR Depth Sensor with a Programmable Region-of-Interest that Enables Hazard Mapping Applications
IEEE Sensors Journal ( IF 4.3 ) Pub Date : 2020-05-15 , DOI: 10.1109/jsen.2020.2971595
Ryan M. Jans , Adam S. Green , Lucas J. Koerner

Ultrasonic sensors have dominated miniaturized depth measurement applications such as robot collision avoidance and walking cane hazard detection yet have limited spatial resolution. Optical time-of-flight (ToF) depth sensors offer the potential for improved spatial resolution, however, ToF depth-sensing cameras may be too large and power-hungry for hand-held applications. We address this gap by experimentally evaluating an infrared ToF sensor (the ST VL53L1X) that uses a single-photon avalanche photodiode array to provide coarse spatial resolution while remaining miniaturized and low-power, thus allowing the generation of hazard maps in hand-held applications. We develop methods and present characterization results for distance measurement accuracy, noise, error, and tolerable ambient illumination. The IR ToF sensor sustains accuracy better than 2% up to a distance of 3000mm for a 73% reflective target in the presence of zero interfering ambient light. We characterize the spatial resolution enabled by this region-of-interest and find off-axis pointing of up to 15.7° in steps of 2.5°. Many hazard detection systems may be moving, which dynamically changes the position and pointing of the depth sensor. We demonstrate the use of a 9-degree-of-freedom (3-axis accelerometer, gyroscope, and magnetometer) inertial measurement unit (IMU) to track sensor pointing. The ToF sensor combined with an IMU forms the basis for a miniaturized depth mapping solution that consumes 97.5mW when operating at 30Hz, and requires simple serial interfaces to a microcontroller.

中文翻译:

具有可编程感兴趣区域的小型化红外深度传感器的表征,可实现危害测绘应用

超声波传感器主导了小型化深度测量应用,例如机器人防撞和手杖危险检测,但空间分辨率有限。光学飞行时间 (ToF) 深度传感器提供了提高空间分辨率的潜力,但是,ToF 深度感应相机对于手持应用来说可能太大且耗电。我们通过实验评估红外 ToF 传感器(ST VL53L1X)来解决这一差距,该传感器使用单光子雪崩光电二极管阵列提供粗略的空间分辨率,同时保持小型化和低功耗,从而允许在手持应用中生成危险图. 我们针对距离测量精度、噪声、误差和可容忍的环境照明开发方法并呈现表征结果。在存在零干扰环境光的情况下,对于反射率为 73% 的目标,红外 ToF 传感器在 3000 毫米的距离内保持优于 2% 的精度。我们表征了该感兴趣区域启用的空间分辨率,并以 2.5° 的步长找到高达 15.7° 的离轴指向。许多危险检测系统可能正在移动,这会动态改变深度传感器的位置和指向。我们演示了使用 9 自由度(3 轴加速度计、陀螺仪和磁力计)惯性测量单元 (IMU) 来跟踪传感器指向。ToF 传感器与 IMU 相结合,构成了小型化深度映射解决方案的基础,该解决方案在 30Hz 下运行时功耗为 97.5mW,并且需要与微控制器的简单串行接口。
更新日期:2020-05-15
down
wechat
bug