当前位置: X-MOL 学术Mater. Today Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A detailed review on heat transfer rate, supercooling, thermal stability and reliability of nanoparticle dispersed organic phase change material for low-temperature applications
Materials Today Energy ( IF 9.0 ) Pub Date : 2020-04-21 , DOI: 10.1016/j.mtener.2020.100408
B. Eanest Jebasingh , A. Valan Arasu

Recent days, the thermal energy storage (TES) is considered as a promising technology to meet the future energy demands. Thermal energy storage based on phase change material (PCM) as energy storage material due to their low cost and high storage capacity at isothermal condition. Nanoparticle dispersed in Phase Change Material (NDPCM) improves the thermal performance of base PCM by enhancing heat transfer rate during storage as well as retrieval time as demonstrated by several researchers. However, few drawbacks like thermal stability and reliability hinder their practical application at an industrial scale. The important feature of this review was that it analyses both the scientific reasons behind the increase or decrease on heat transfer rate, thermal stability, supercooling, thermal reliability and viscosity on base PCM due to the dispersion of nanoparticles as well as supporting materials into the PCM matrix and the impact of influencing parameters like size, shape, material of the nanoparticles on the thermal properties of PCM between the operating temperature range of 20–37 °C as required in low temperature applications. The reported research works ascertain that the heat transfer rate and thermal reliability of NDPCM based thermal storage system are improved and thermal stability of NDPCM is decreased by the addition of nanoparticles. It should be noted that carbon based nanoparticle has some noteworthy effects on thermal property of PCM than metal or metal oxide nanoparticles.



中文翻译:

纳米粒子分散有机相变材料在低温应用中的传热速率,过冷,热稳定性和可靠性的详细综述

最近几天,热能存储(TES)被认为是满足未来能源需求的有前途的技术。基于相变材料(PCM)的热能存储装置,因为它们的成本低,并且在等温条件下具有高存储容量。分散在相变材料(NDPCM)中的纳米颗粒通过提高存储过程中的传热速率以及恢复时间来改善基础PCM的热性能,这已得到一些研究人员的证实。但是,几乎没有诸如热稳定性和可靠性之类的缺点妨碍它们在工业规模上的实际应用。这篇评论的重要特征在于,它分析了传热速率,热稳定性,过冷,由于纳米颗粒以及支撑材料进入PCM基质中的分散性以及诸如20的工作温度范围内的纳米颗粒的尺寸,形状,材料等影响参数的影响,基础PCM的热可靠性和粘度低温应用中要求为–37°C。报道的研究工作确定,通过添加纳米粒子,可以改善基于NDPCM的储热系统的传热速率和热可靠性,并降低NDPCM的热稳定性。应当注意,碳基纳米颗粒比金属或金属氧化物纳米颗粒对PCM的热性能具有一些值得注意的影响。低温应用中所需的纳米颗粒材料对PCM热性能的影响介于20–37°C的工作温度范围之间。报道的研究工作确定,通过添加纳米粒子,可以改善基于NDPCM的储热系统的传热速率和热可靠性,并降低NDPCM的热稳定性。应当注意,碳基纳米颗粒比金属或金属氧化物纳米颗粒对PCM的热性能具有一些值得注意的影响。低温应用中所需的纳米颗粒材料对PCM热性能的影响介于20–37°C的工作温度范围之间。报道的研究工作确定,通过添加纳米粒子,可以改善基于NDPCM的储热系统的传热速率和热可靠性,并降低NDPCM的热稳定性。应当注意,碳基纳米颗粒比金属或金属氧化物纳米颗粒对PCM的热性能具有一些值得注意的影响。报道的研究工作确定,通过添加纳米粒子,可以改善基于NDPCM的储热系统的传热速率和热可靠性,并降低NDPCM的热稳定性。应当注意,碳基纳米颗粒比金属或金属氧化物纳米颗粒对PCM的热性能具有一些值得注意的影响。报道的研究工作确定,通过添加纳米粒子,可以改善基于NDPCM的储热系统的传热速率和热可靠性,并降低NDPCM的热稳定性。应当注意,碳基纳米颗粒比金属或金属氧化物纳米颗粒对PCM的热性能具有一些值得注意的影响。

更新日期:2020-04-21
down
wechat
bug