当前位置: X-MOL 学术FEMS Microbiol. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost.
FEMS Microbiology Ecology ( IF 3.5 ) Pub Date : 2020-05-01 , DOI: 10.1093/femsec/fiaa057
Yaxin Xue 1 , Inge Jonassen 1 , Lise Øvreås 2, 3 , Neslihan Taş 4, 5
Affiliation  

Permafrost underlies a large portion of the land in the Northern Hemisphere. It is proposed to be an extreme habitat and home for cold-adaptive microbial communities. Upon thaw permafrost is predicted to exacerbate increasing global temperature trend, where awakening microbes decompose millennia old carbon stocks. Yet our knowledge on composition, functional potential and variance of permafrost microbiome remains limited. In this study, we conducted a deep comparative metagenomic analysis through a 2 m permafrost core from Svalbard, Norway to determine key permafrost microbiome in this climate sensitive island ecosystem. To do so, we developed comparative metagenomics methods on metagenomic-assembled genomes (MAG). We found that community composition in Svalbard soil horizons shifted markedly with depth: the dominant phylum switched from Acidobacteria and Proteobacteria in top soils (active layer) to Actinobacteria, Bacteroidetes, Chloroflexi and Proteobacteria in permafrost layers. Key metabolic potential propagated through permafrost depths revealed aerobic respiration and soil organic matter decomposition as key metabolic traits. We also found that Svalbard MAGs were enriched in genes involved in regulation of ammonium, sulfur and phosphate. Here, we provide a new perspective on how permafrost microbiome is shaped to acquire resources in competitive and limited resource conditions of deep Svalbard soils.

中文翻译:

由基因组组装的基因组分布和关键功能突出了有氧代谢在斯瓦尔巴德永久冻土中的重要性。

永久冻土是北半球大部分土地的基础。建议将其作为适应寒冷的微生物群落的极端栖息地和家园。预计融化后的永久冻土会加剧全球气温上升的趋势,唤醒的微生物会分解成千上万年的老碳库。然而,我们对多年冻土微生物组的组成,功能潜力和变化的认识仍然有限。在这项研究中,我们通过来自挪威斯瓦尔巴特群岛的一个2 m多年冻土岩心进行了深入的对比宏基因组学分析,以确定该气候敏感岛生态系统中的关键多年冻土微生物组。为此,我们开发了在宏基因组组装的基因组(MAG)上的比较宏基因组学方法。我们发现斯瓦尔巴德群岛土壤层中的群落组成随着深度的变化而显着变化:优势门从表层土壤(活性层)的酸性细菌和变形细菌转变为永久冻土层的放线杆菌,拟杆菌,绿弯曲菌和变形杆菌。通过多年冻土层传播的关键代谢潜能表明,有氧呼吸和土壤有机质分解是关键代谢特征。我们还发现,斯瓦尔巴群岛的MAGs富含涉及铵,硫和磷酸盐调节的基因。在这里,我们提供了一个新的观点,即永冻土微生物组如何在竞争激烈且资源有限的斯瓦尔巴特群岛深厚土壤条件下获得资源。通过多年冻土层传播的关键代谢潜能表明,有氧呼吸和土壤有机质分解是关键代谢特征。我们还发现,斯瓦尔巴群岛的MAGs富含涉及铵,硫和磷酸盐调节的基因。在这里,我们提供了一个新的观点,即永冻土微生物组如何在竞争激烈且资源有限的斯瓦尔巴特群岛深厚土壤条件下获得资源。通过多年冻土层传播的关键代谢潜能表明,有氧呼吸和土壤有机质分解是关键代谢特征。我们还发现,斯瓦尔巴群岛的MAGs富含涉及调节铵,硫和磷酸盐的基因。在这里,我们提供了一个新的观点,即永冻土微生物组如何在竞争激烈且资源有限的斯瓦尔巴特群岛深厚土壤条件下获得资源。
更新日期:2020-04-21
down
wechat
bug