当前位置: X-MOL 学术Int. J. Robot. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and analysis of soft robotic fingers using the fin ray effect
The International Journal of Robotics Research ( IF 9.2 ) Pub Date : 2020-04-13 , DOI: 10.1177/0278364920913926
Xiaowei Shan 1 , Lionel Birglen 2
Affiliation  

Soft grasping of random objects in unstructured environments has been a research topic of predilection both in academia and in industry because of its complexity but great practical relevance. However, accurate modeling of soft hands and fingers has proven a difficult challenge to tackle. Focusing on this issue, this article presents a detailed mathematical modeling and performance analysis of parallel grippers equipped with soft fingers taking advantage of the fin ray effect (FRE). The FRE, based on biomimetic principles, is most commonly found in the design of grasping soft fingers, but despite their popularity, finding a convenient model to assess the grasp capabilities of these fingers is challenging. This article aims at solving this issue by providing an analytic tool to better understand and ultimately design this type of soft fingers. First, a kinetostatic model of a general multi-crossbeam finger is established. This model will allow for a fast yet accurate estimation of the contact forces generated when the fingers grasp an arbitrarily shaped object. The obtained mathematical model will be subsequently validated by numerically to ensure the estimations of the overall grasp strength and individual contact forces are indeed accurate. Physical experiments conducted with 3D-printed fingers of the most common architecture of FRE fingers will also be presented and shown to support the proposed model. Finally, the impact of the relative stiffness between different areas of the fingers will be evaluated to provide insight into further refinement and optimization of these fingers.

中文翻译:

基于鳍射线效应的机器人软手指建模与分析

非结构化环境中随机物体的软抓取由于其复杂性但具有很大的实际意义,一直是学术界和工业界偏爱的研究课题。然而,软手和手指的精确建模已被证明是一个难以解决的挑战。针对这个问题,本文介绍了配备软手指的平行夹具的详细数学建模和性能分析,利用鳍射线效应 (FRE)。FRE 基于仿生原理,最常见于抓握软手指的设计中,但尽管它们很受欢迎,但找到一个方便的模型来评估这些手指的抓握能力仍具有挑战性。本文旨在通过提供一种分析工具来更好地理解并最终设计这种类型的软手指来解决这个问题。首先,建立一般多横梁手指的动静力学模型。该模型将允许快速而准确地估计手指抓住任意形状的物体时产生的接触力。随后将通过数值验证获得的数学模型,以确保整体抓握强度和个体接触力的估计确实准确。还将展示和展示使用最常见的 FRE 手指结构的 3D 打印手指进行的物理实验,以支持所提出的模型。最后,将评估手指不同区域之间相对刚度的影响,以深入了解这些手指的进一步细化和优化。该模型将允许快速而准确地估计手指抓住任意形状的物体时产生的接触力。随后将通过数值验证获得的数学模型,以确保整体抓握强度和个体接触力的估计确实准确。还将展示和展示使用最常见的 FRE 手指结构的 3D 打印手指进行的物理实验,以支持所提出的模型。最后,将评估手指不同区域之间相对刚度的影响,以深入了解这些手指的进一步细化和优化。该模型将允许快速而准确地估计手指抓住任意形状的物体时产生的接触力。随后将通过数值验证获得的数学模型,以确保整体抓握强度和个体接触力的估计确实准确。还将展示和展示使用最常见的 FRE 手指结构的 3D 打印手指进行的物理实验,以支持所提出的模型。最后,将评估手指不同区域之间相对刚度的影响,以深入了解这些手指的进一步细化和优化。随后将通过数值验证获得的数学模型,以确保整体抓握强度和个体接触力的估计确实准确。还将展示和展示使用最常见的 FRE 手指结构的 3D 打印手指进行的物理实验,以支持所提出的模型。最后,将评估手指不同区域之间相对刚度的影响,以深入了解这些手指的进一步细化和优化。随后将通过数值验证获得的数学模型,以确保整体抓握强度和个体接触力的估计确实准确。还将展示和展示使用最常见的 FRE 手指结构的 3D 打印手指进行的物理实验,以支持所提出的模型。最后,将评估手指不同区域之间相对刚度的影响,以深入了解这些手指的进一步细化和优化。
更新日期:2020-04-13
down
wechat
bug