当前位置: X-MOL 学术Proc. Inst. Mech. Eng. E J. Process Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shape optimization of a split-and-recombine micromixer by the local energy dissipation rate
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ( IF 2.3 ) Pub Date : 2020-03-16 , DOI: 10.1177/0954408920910588
Eshaq Ebnereza 1 , Kamran Hassani 1 , Mahmoud Seraj 2 , Katayoun Gohari Moghaddam 3
Affiliation  

A passive split-and-recombine micromixer was developed based on the concept of lamellar structure and advection mixing type for a serpentine structure. The flow patterns and mixing performance were analyzed using numerical simulation in Reynolds number range of 10≤ Reynolds ≤170. Two design variables, defining the shape of the split-and-recombine branch, were optimized by the local energy dissipation rate as the objective function. The reduction of computation time and the absence of numerical diffusion were the advantages of using the energy dissipation rate as the objective function. At each Reynolds number, 64 sample data was generated on the design space uniformly. Then a model was used based on the Radial basis neural network for the prediction of the objective function. The optimum values of the design variables within the constraint range were found on the response surface. The optimization study was performed at five Reynolds numbers of 10, 50, 90, 130, 170 and the mixing index was improved 0.156, 0.298, 0.417, 0.506, and 0.57, respectively. The effect of design variables on the objective function and the concentration pattern was presented and analyzed. Finally, the mixing characteristic of the split-and-recombine micromixer was studied in a wide range of Reynolds number and the flow was categorized to stratify and show the vortex regime based on the Reynolds number. The optimized split-and-recombine micromixer could be integrated by any system depending on the desired velocity and Reynolds number.

中文翻译:

基于局部能量耗散率的分体复合微混合器形状优化

基于蛇形结构的层状结构和对流混合类型的概念开发了一种被动分裂和重组微混合器。在雷诺数 10≤雷诺≤170的范围内使用数值模拟分析流动模式和混合性能。两个设计变量,定义分裂和重组分支的形状,通过局部能量耗散率作为目标函数进行优化。减少计算时间和没有数值扩散是使用能量耗散率作为目标函数的优点。在每个雷诺数下,设计空间上均匀地生成了 64 个样本数据。然后使用基于径向基神经网络的模型来预测目标函数。在响应面上找到约束范围内的设计变量的最佳值。优化研究在 10、50、90、130、170 五个雷诺数下进行,混合指数分别提高了 0.156、0.298、0.417、0.506 和 0.57。提出并分析了设计变量对目标函数和浓度模式的影响。最后,在广泛的雷诺数范围内研究了拆分和重组微混合器的混合特性,并根据雷诺数对流动进行分类以分层并显示涡流状态。根据所需的速度和雷诺数,优化的拆分和重组微混合器可以由任何系统集成。130、170和混合指数分别提高了0.156、0.298、0.417、0.506和0.57。提出并分析了设计变量对目标函数和浓度模式的影响。最后,在广泛的雷诺数范围内研究了拆分和重组微混合器的混合特性,并根据雷诺数对流动进行分类以分层并显示涡流状态。根据所需的速度和雷诺数,优化的拆分和重组微混合器可以由任何系统集成。130、170和混合指数分别提高了0.156、0.298、0.417、0.506和0.57。提出并分析了设计变量对目标函数和浓度模式的影响。最后,在广泛的雷诺数范围内研究了拆分和重组微混合器的混合特性,并根据雷诺数对流动进行分类以分层并显示涡流状态。根据所需的速度和雷诺数,优化的拆分和重组微混合器可以由任何系统集成。在广泛的雷诺数范围内研究了拆分和重组微混合器的混合特性,并根据雷诺数对流动进行分类以分层并显示涡流状态。根据所需的速度和雷诺数,优化的拆分和重组微混合器可以由任何系统集成。在广泛的雷诺数范围内研究了拆分和重组微混合器的混合特性,并根据雷诺数对流动进行分类以分层并显示涡流状态。根据所需的速度和雷诺数,优化的拆分和重组微混合器可以由任何系统集成。
更新日期:2020-03-16
down
wechat
bug