当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-axial electro-mechanical testing methodology for highly stretchable freestanding micron-sized structures
Journal of Micromechanics and Microengineering ( IF 2.3 ) Pub Date : 2020-03-20 , DOI: 10.1088/1361-6439/ab748f
S Shafqat 1 , A M Savov 2, 3 , S Joshi 2, 3 , R Dekker 2, 3 , M G D Geers 1 , J P M Hoefnagels 1
Affiliation  

Recent advances in MEMS technology have brought forward a new class of high-density stretchable/flexible electronics as well as large displacement MEMS devices. The in-situ electro-mechanical characterization of such devices is challenging since it requires: (i) highly delicate sample handling, (ii) controlled application of large (hundreds of µm) multi-axial displacements to mimic service conditions, (iii) integrated electrical testing and (iv) fast actuation for cyclic testing. Techniques already developed for small-scale testing in literature fall short to meet the combined set of requirements. To this end, a characterization methodology that fulfills all these requirements is developed and presented here. The technique is based on a piezo-driven micro-tensile stage, which provides large multi-axial displacements with high resolution and fast actuation (4000 µm/s). This is combined with a method for sample microfabrication on a test-chip to warrant delicate sample handling. Proof-of-principle experiments are shown for multi-axial mechanical characterization, electrical characterization and high cycle fatigue testing of micron-sized highly stretchable interconnects. Experiments are conducted under in-situ microscopic observation using optical microscopy, scanning electron microscopy, and high-resolution profilometry. The generic platform proposed here can be used for other problems where similar requirements are faced, e.g. other miniaturized, large displacement electro-mechanical applications that are currently being developed.

中文翻译:

高度可拉伸的独立微米级结构的多轴机电测试方法

MEMS 技术的最新进展带来了一类新的高密度可拉伸/柔性电子产品以及大位移 MEMS 器件。这种设备的原位机电表征具有挑战性,因为它需要:(i)高度精细的样品处理,(ii)大(数百微米)多轴位移的受控应用以模拟服务条件,(iii)集成电气测试和 (iv) 循环测试的快速驱动。文献中已经为小规模测试开发的技术无法满足组合的要求。为此,本文开发并介绍了满足所有这些要求的表征方法。该技术基于压电驱动的微拉伸平台,它提供大的多轴位移、高分辨率和快速驱动 (4000 µm/s)。这与在测试芯片上进行样品微加工的方法相结合,以保证精细的样品处理。展示了用于微米级高度可拉伸互连的多轴机械特性、电气特性和高周疲劳测试的原理验证实验。实验是在使用光学显微镜、扫描电子显微镜和高分辨率轮廓测定法的原位显微观察下进行的。此处提出的通用平台可用于面临类似要求的其他问题,例如目前正在开发的其他小型化、大位移机电应用。这与在测试芯片上进行样品微加工的方法相结合,以保证精细的样品处理。展示了用于微米级高度可拉伸互连的多轴机械特性、电气特性和高周疲劳测试的原理验证实验。实验是在使用光学显微镜、扫描电子显微镜和高分辨率轮廓测定法的原位显微观察下进行的。此处提出的通用平台可用于面临类似要求的其他问题,例如目前正在开发的其他小型化、大位移机电应用。这与在测试芯片上进行样品微加工的方法相结合,以保证精细的样品处理。展示了用于微米级高度可拉伸互连的多轴机械特性、电气特性和高周疲劳测试的原理验证实验。实验是在使用光学显微镜、扫描电子显微镜和高分辨率轮廓测定法的原位显微观察下进行的。此处提出的通用平台可用于面临类似要求的其他问题,例如目前正在开发的其他小型化、大位移机电应用。微米级高度可拉伸互连的电气特性和高周疲劳测试。实验是在使用光学显微镜、扫描电子显微镜和高分辨率轮廓测定法的原位显微观察下进行的。此处提出的通用平台可用于面临类似要求的其他问题,例如目前正在开发的其他小型化、大位移机电应用。微米级高度可拉伸互连的电气特性和高周疲劳测试。实验是在使用光学显微镜、扫描电子显微镜和高分辨率轮廓测定法的原位显微观察下进行的。此处提出的通用平台可用于面临类似要求的其他问题,例如目前正在开发的其他小型化、大位移机电应用。
更新日期:2020-03-20
down
wechat
bug