当前位置: X-MOL 学术Rangel. Ecol. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Summer-Time Carbon and Water Fluxes in Sagebrush Ecosystems Spanning Rain- to Snow-Dominated Precipitation Regimes
Rangeland Ecology & Management ( IF 2.4 ) Pub Date : 2019-12-27 , DOI: 10.1016/j.rama.2019.11.002
Harmandeep Sharma , Keith Reinhardt , Kathleen A. Lohse , Ken Aho

Sagebrush ecosystems consist of different communities of species and subspecies of sagebrush marked by distinct ecotones along elevation gradients, yet few studies have quantified how ecosystem-scale carbon dioxide (net ecosystem exchange, NEE) and water fluxes (evapotranspiration, ET), as well as their environmental drivers, vary among communities dominated by different sub/species of sagebrush at daily and seasonal time scales. To address this knowledge gap, we measured daytime (6 a.m.–6 p.m.) NEE and ET using a tent chamber and associated environmental drivers in three sagebrush communities spanning an elevation gradient of 1 425–2 111 m at the Reynolds Creek Critical Zone Observatory in southwestern Idaho. Daytime NEE and ET were greatest at the highest elevation (snow-dominated) site during the study period except NEE in June. By late summer, NEE declined by > 80% at the lower (rain-dominated) sites but only 50% at the highest site, compared with maximal values in June. In contrast, ET declined ∼95% in late summer compared with June at all three sites. Ecosystem-scale NEE and ET were mainly controlled by soil moisture and vapor pressure deficit at the rain-dominated sites and by deep soil moisture and air temperature at the snow-dominated site. Cumulative (June−August) modeled daytime NEE was greatest at the midelevation site, whereas cumulative daytime ET was greatest at the highest-elevation site. Ecosystem models often assume that sagebrush landscapes are homogeneous and do not differ in fluxes and controls, yet our data demonstrate that there are fundamental differences in CO2 and water fluxes and their controls among different shrub communities that should be accounted for in these models.



中文翻译:

跨越雨雪为主的降雨体制的鼠尾草生态系统中的夏季碳和水通量

鼠尾草的生态系统由鼠尾草的不同物种和亚种群落组成,其特征是沿海拔梯度具有明显的生态交错带,但很少有研究量化生态系统规模的二氧化碳(净生态系统交换,NEE)和水通量(蒸散量,ET)以及在每天和季节性的时间尺度上,由不同的山楂树亚种所主导的社区之间,它们的环境驱动因素各不相同。为了解决这一知识鸿沟,我们在美国雷诺兹克里克临界区天文台的三个鼠尾草群落中,使用了一个帐篷室和相关的环境驱动器,测量了白天(上午6点至下午6点)的NEE和ET,它们的海拔梯度为1 425-2 111 m。爱达荷州西南部。在研究期间,除了6月份的NEE以外,白天的NEE和ET在海拔最高(以雪为主)的地点最大。到夏末,与6月份的最大值相比,较低(受雨水为主)站点的NEE下降了80%以上,而最高站点仅下降了50%。相反,与三个月相比,夏末的ET下降了约95%。生态系统规模的NEE和ET主要受雨为主的地区的土壤水分和蒸气压亏缺以及受雪为主的地点的深层土壤水分和气温的控制。累积(6月至8月)建模的白天NEE在中间高程站点最大,而累积白天ET在最高海拔站点最大。生态系统模型通常假定鼠尾草景观是同质的,通量和控制量没有差异,但我们的数据表明,CO的存在根本差异 与6月的最大值进行比较。相反,与三个月相比,夏末的ET下降了约95%。生态系统规模的NEE和ET主要受雨为主的地区的土壤水分和蒸气压亏缺以及受雪为主的地点的深层土壤水分和气温的控制。累积(6月至8月)建模的白天NEE在中高程站点最大,而累积白天ET在最高海拔站点最大。生态系统模型通常假定鼠尾草景观是同质的,通量和控制量没有差异,但我们的数据表明,CO的存在根本差异 与6月的最大值进行比较。相反,与三个月相比,夏末的ET下降了约95%。生态系统规模的NEE和ET主要受雨为主的地区的土壤水分和蒸气压亏缺以及受雪为主的地点的深层土壤水分和气温的控制。累积(6月至8月)建模的白天NEE在中间高程站点最大,而累积白天ET在最高海拔站点最大。生态系统模型通常假定鼠尾草景观是同质的,通量和控制量没有差异,但我们的数据表明,CO的存在根本差异 生态系统规模的NEE和ET主要受雨为主的地区的土壤水分和蒸气压亏缺以及受雪为主的地点的深层土壤水分和气温的控制。累积(6月至8月)建模的白天NEE在中高程站点最大,而累积白天ET在最高海拔站点最大。生态系统模型通常假设鼠尾草景观是同质的,通量和控制量没有差异,但我们的数据表明,二氧化碳的含量存在根本差异 生态系统规模的NEE和ET主要受雨为主的地区的土壤水分和蒸气压亏缺以及受雪为主的地点的深层土壤水分和气温的控制。累积(6月至8月)建模的白天NEE在中间高程站点最大,而累积白天ET在最高海拔站点最大。生态系统模型通常假设鼠尾草景观是同质的,并且通量和控制量没有差异,但我们的数据表明,二氧化碳的含量存在根本差异2和在这些模型中应该考虑的不同灌木群落之间的水通量及其控制。

更新日期:2020-04-21
down
wechat
bug