当前位置: X-MOL 学术Phys. Plasmas › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasma and trap-based techniques for science with antimatter
Physics of Plasmas ( IF 2.2 ) Pub Date : 2020-03-01 , DOI: 10.1063/1.5131273
J. Fajans 1 , C. M. Surko 2
Affiliation  

Positrons (i.e., antielectrons) find use in a wide variety of applications, and antiprotons are required for the formation and study of antihydrogen. Available sources of these antiparticles are relatively weak. To optimize their use, most applications require that the antiparticles be accumulated into carefully prepared plasmas. We present an overview of the techniques that have been developed to efficiently accumulate low energy antiparticles and create, in particular, tailored antiparticle plasmas. Techniques are also described to create tailored antiparticle beams. Many of these techniques are based on methods first developed by the nonneutral plasma community using electron plasmas for increased data rate. They have enabled the creation and trapping of antihydrogen, have been critical to studies of positron and positronium interactions with matter, including advanced techniques to characterize materials and material surfaces, and have led to the creation and study of the positronium molecule. Rather than attempting to be comprehensive, we focus on techniques that have proven most useful, applications where there has been significant, recent progress, and areas that hold promise for future advances. Examples of the latter include the ever more precise comparisons of the properties of antihydrogen and hydrogen, tests of gravity using antihydrogen and positronium atoms, and efforts to create and study phases of the many-electron, many-positron system.

中文翻译:

基于等离子体和陷阱的反物质科学技术

正电子(即反电子)可用于多种应用,反氢的形成和研究需要反质子。这些反粒子的可用来源相对较弱。为了优化它们的使用,大多数应用需要将反粒子积累到精心准备的等离子体中。我们概述了已开发的技术,以有效地积累低能反粒子并创建特别是定制的反粒子等离子体。还描述了创建定制反粒子束的技术。许多这些技术基于非中性等离子体社区首先开发的方法,使用电子等离子体来提高数据速率。它们使反氢的产生和捕获成为可能,对研究正电子和正电子与物质的相互作用至关重要,包括表征材料和材料表面的先进技术,并导致了正电子分子的创造和研究。与其试图全面,我们专注于已被证明最有用的技术、最近取得重大进展的应用以及有望取得未来进步的领域。后者的例子包括对反氢和氢的性质进行更精确的比较,使用反氢和正电子原子进行重力测试,以及努力创造和研究多电子多正电子系统的相。与其试图全面,我们专注于已被证明最有用的技术、最近取得重大进展的应用以及有望取得未来进步的领域。后者的例子包括对反氢和氢的性质进行更精确的比较,使用反氢和正电子原子进行重力测试,以及努力创造和研究多电子多正电子系统的相。与其试图全面,我们专注于已被证明最有用的技术、最近取得重大进展的应用以及有望取得未来进步的领域。后者的例子包括对反氢和氢的性质进行更精确的比较,使用反氢和正电子原子进行重力测试,以及努力创造和研究多电子多正电子系统的相。
更新日期:2020-03-01
down
wechat
bug