当前位置: X-MOL 学术Math. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving Automated Geological Logging of Drill Holes by Incorporating Multiscale Spatial Methods
Mathematical Geosciences ( IF 2.8 ) Pub Date : 2020-03-11 , DOI: 10.1007/s11004-020-09859-0
E. June Hill , Mark A. Pearce , Jessica M. Stromberg

Abstract

Manually interpreting multivariate drill hole data is very time-consuming, and different geologists will produce different results due to the subjective nature of geological interpretation. Automated or semi-automated interpretation of numerical drill hole data is required to reduce time and subjectivity of this process. However, results from machine learning algorithms applied to drill holes, without reference to spatial information, typically result in numerous small-scale units. These small-scale units result not only from the presence of very small rock units, which may be below the scale of interest, but also from misclassification. A novel method is proposed that uses the continuous wavelet transform to identify geological boundaries and uses wavelet coefficients to indicate boundary strength. The wavelet coefficient is a useful measure of boundary strength because it reflects both wavelength and amplitude of features in the signal. This means that boundary strength is an indicator of the apparent thickness of geological units and the amount of change occurring at each geological boundary. For multivariate data, boundaries from multiple variables are combined and multiscale domains are calculated using the combined boundary strengths. The method is demonstrated using multi-element geochemical data from mineral exploration drill holes. The method is fast, reduces misclassification, provides a choice of scales of interpretation and results in hierarchical classification for large scales where domains may contain more than one rock type.



中文翻译:

结合多尺度空间方法改进钻孔自动地质测井

摘要

手动解释多变量钻孔数据非常耗时,并且由于地质解释的主观性质,不同的地质学家会产生不同的结果。为了减少此过程的时间和主观性,需要对钻孔数据进行自动或半自动解释。但是,在不参考空间信息的情况下,应用于钻孔的机器学习算法的结果通常会导致大量小规模单位。这些小规模的单位不仅是由于可能低于目标规模的很小的岩石单位的存在,而且还归因于分类错误。提出了一种利用连续小波变换识别地质边界并利用小波系数表示边界强度的新方法。小波系数是边界强度的有用度量,因为它既反映了信号中特征的波长又反映了振幅。这意味着边界强度是地质单位表观厚度和在每个地质边界发生的变化量的指标。对于多变量数据,将来自多个变量的边界进行组合,并使用组合的边界强度来计算多尺度域。使用来自矿物勘探钻孔的多元素地球化学数据证明了该方法。该方法快速,减少了错误分类,提供了一种解释尺度的选择,并导致了针对大尺度的分层分类,其中领域可能包含多个岩石类型。这意味着边界强度是地质单位表观厚度和在每个地质边界发生的变化量的指标。对于多变量数据,将来自多个变量的边界进行组合,并使用组合的边界强度来计算多尺度域。使用来自矿物勘探钻孔的多元素地球化学数据证明了该方法。该方法快速,减少了错误分类,提供了一种解释尺度的选择,并导致了针对大尺度的分层分类,其中领域可能包含多个岩石类型。这意味着边界强度是地质单位表观厚度和在每个地质边界发生的变化量的指标。对于多变量数据,将来自多个变量的边界进行组合,并使用组合的边界强度来计算多尺度域。使用来自矿物勘探钻孔的多元素地球化学数据证明了该方法。该方法快速,减少了错误分类,提供了一种解释尺度的选择,并导致了针对大尺度的分层分类,其中领域可能包含多个岩石类型。合并来自多个变量的边界,并使用合并后的边界强度计算多尺度域。使用来自矿物勘探钻孔的多元素地球化学数据证明了该方法。该方法快速,减少了错误分类,提供了一种解释尺度的选择并导致了针对大尺度的分层分类,其中领域可能包含多个岩石类型。合并来自多个变量的边界,并使用合并后的边界强度计算多尺度域。使用来自矿物勘探钻孔的多元素地球化学数据证明了该方法。该方法快速,减少了错误分类,提供了一种解释尺度的选择并导致了针对大尺度的分层分类,其中领域可能包含多个岩石类型。

更新日期:2020-04-13
down
wechat
bug