当前位置: X-MOL 学术Int. J. Intell. Robot. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energetic analysis and optimization of a bi-modal rolling-flying vehicle
International Journal of Intelligent Robotics and Applications ( IF 2.1 ) Pub Date : 2020-03-09 , DOI: 10.1007/s41315-020-00119-2
Stefan Atay , Tyler Jenkins , Gregory Buckner , Matthew Bryant

This paper presents an energetics analysis of a bi-modal vehicle that is capable of rolling and flying. The vehicle under consideration combines the mobility and maneuverability of rotary wing flight with the efficiency of rolling locomotion. The energetics analysis uses blade element momentum theory and an electromechanical motor model to predict the electrical power consumption of the propulsion system and the maximum range of the vehicle. The performance of the rolling-flying vehicle (RFV) is compared to that of a conventional quadrotor, with the RFV having a cost of transport approximately one tenth that of the quadrotor. Analysis demonstrates that rolling locomotion provides an additional degree of control which permits optimizing the vehicle’s operation to either maximize range or minimize power. Simulations reveal a complex dependence of power on vehicle velocity and angle of attack, which informs the optimization strategy. Methods for optimization are discussed. This optimization strategy negates the need for an explicit locomotion mode decision as the transition from rolling to flying occurs naturally as a byproduct of the optimization.

中文翻译:

双模态滚动飞行器的能量分析与优化

本文介绍了一种能够滚动和飞行的双峰飞行器的能量学分析。所考虑的车辆将旋翼飞行的机动性和机动性与滚动运动的效率结合在一起。能量学分析使用叶片单元动量理论和机电马达模型来预测推进系统的电力消耗和车辆的最大行驶距离。将滚动飞行器(RFV)的性能与常规四旋翼飞行器的性能进行了比较,RFV的运输成本约为四旋翼飞行器的十分之一。分析表明,滚动运动提供了附加的控制程度,从而可以优化车辆的运行以最大化范围或最小化功率。仿真揭示了功率对车辆速度和迎角的复杂依赖性,从而为优化策略提供了依据。讨论了优化方法。这种优化策略不需要进行明确的运动模式决策,因为从滚动到飞行的过渡自然是优化的副产品。
更新日期:2020-03-09
down
wechat
bug