当前位置: X-MOL 学术J. Tissue Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alginate-encapsulated brain-derived neurotrophic factor-overexpressing mesenchymal stem cells are a promising drug delivery system for protection of auditory neurons.
Journal of Tissue Engineering ( IF 8.2 ) Pub Date : 2020-04-17 , DOI: 10.1177/2041731420911313
Jana Schwieger 1, 2 , Anika Hamm 2, 3 , Michael M Gepp 4, 5 , André Schulz 4 , Andrea Hoffmann 2, 3 , Thomas Lenarz 1, 2, 6 , Verena Scheper 1, 2, 6
Affiliation  

The cochlear implant outcome is possibly improved by brain-derived neurotrophic factor treatment protecting spiral ganglion neurons. Implantation of genetically modified mesenchymal stem cells may enable the required long-term brain-derived neurotrophic factor administration. Encapsulation of mesenchymal stem cells in ultra-high viscous alginate may protect the mesenchymal stem cells from the recipient's immune system and prevent their uncontrolled migration. Alginate stability and survival of mesenchymal stem cells in alginate were evaluated. Brain-derived neurotrophic factor production was measured and its protective effect was analyzed in dissociated rat spiral ganglion neuron co-culture. Since the cochlear implant is an active electrode, alginate-mesenchymal stem cell samples were electrically stimulated and alginate stability and mesenchymal stem cell survival were investigated. Stability of ultra-high viscous-alginate and alginate-mesenchymal stem cells was proven. Brain-derived neurotrophic factor production was detectable and spiral ganglion neuron survival, bipolar morphology, and neurite outgrowth were increased. Moderate electrical stimulation did not affect the mesenchymal stem cell survival and their viability was good within the investigated time frame. Local drug delivery by ultra-high viscous-alginate-encapsulated brain-derived neurotrophic factor-overexpressing mesenchymal stem cells is a promising strategy to improve the cochlear implant outcome.

中文翻译:

藻酸盐包裹的脑源性神经营养因子过表达的间充质干细胞是用于保护听觉神经元的有希望的药物递送系统。

通过保护螺旋神经节神经元的脑源性神经营养因子治疗可能会改善人工耳蜗植入的效果。转基因的间充质干细胞的植入可能使所需的长期脑源性神经营养因子管理成为可能。将间充质干细胞包裹在超高粘度藻酸盐中可以保护间充质干细胞免于受体的免疫系统并防止其不受控制的迁移。评价藻酸盐中藻酸盐的稳定性和间充质干细胞的存活率。在分离的大鼠螺旋神经节神经元共培养物中,测量了脑源性神经营养因子的产生,并分析了其保护作用。由于人工耳蜗是有源电极,电刺激藻酸盐-间充质干细胞样品,并研究藻酸盐稳定性和间充质干细胞存活率。证明了超高粘性藻酸盐和藻酸盐间充质干细胞的稳定性。可检测到脑源性神经营养因子,并增加了螺旋神经节神经元的存活率,双极形态和神经突生长。适度的电刺激不会影响间充质干细胞的存活,并且在所研究的时间范围内它们的生存能力良好。超高粘藻酸盐包裹的脑源性神经营养因子过表达的间充质干细胞的局部药物递送是改善人工耳蜗植入结果的一种有前途的策略。证明了超高粘性藻酸盐和藻酸盐间充质干细胞的稳定性。可检测到脑源性神经营养因子,并增加了螺旋神经节神经元的存活率,双极形态和神经突长出。适度的电刺激不会影响间充质干细胞的存活,并且在所研究的时间范围内它们的生存能力良好。超高粘藻酸盐包裹的脑源性神经营养因子过表达的间充质干细胞的局部药物递送是改善人工耳蜗植入结果的一种有前途的策略。证明了超高粘性藻酸盐和藻酸盐间充质干细胞的稳定性。可检测到脑源性神经营养因子,并增加了螺旋神经节神经元的存活率,双极形态和神经突生长。适度的电刺激不会影响间充质干细胞的存活,并且在所研究的时间范围内它们的生存能力良好。超高黏度藻酸盐包裹的脑源性神经营养因子过表达的间充质干细胞的局部药物递送是改善人工耳蜗植入结果的一种有前途的策略。适度的电刺激不会影响间充质干细胞的存活,并且在所研究的时间范围内它们的生存能力良好。超高粘藻酸盐包裹的脑源性神经营养因子过表达的间充质干细胞的局部药物递送是改善人工耳蜗植入结果的一种有前途的策略。适度的电刺激不影响间充质干细胞的存活,并且在研究的时间内它们的生存能力良好。超高粘藻酸盐包裹的脑源性神经营养因子过表达的间充质干细胞的局部药物递送是改善人工耳蜗植入结果的一种有前途的策略。
更新日期:2020-04-21
down
wechat
bug