当前位置: X-MOL 学术Clean Techn. Environ. Policy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Retention of organics and degradation of micropollutants in municipal wastewater using impregnated ceramics
Clean Technologies and Environmental Policy ( IF 4.3 ) Pub Date : 2020-01-22 , DOI: 10.1007/s10098-020-01813-2
Lev Tsapovsky , Michal Simhon , Vincenzo Roberto Calderone , Gadi Rothenberg , Vitaly Gitis

Abstract

Pesticides, personal care products, industrial chemicals often pollute surface- and groundwater sources. With trace concentrations and low molecular weights, these micropollutants (MPs) easily penetrate through treatment systems and impose a real health threat on drinking water consumers. The absence of a dedicated MP-retaining treatment technology at water treatment plants results in a constant consumption of MP-contaminated water. Advanced oxidation processes, and in particular the Fenton reaction, can successfully degrade MPs if other, larger, fractions of organics are retained. Here, we suggest a novel combined two-stage retention–degradation approach. Ceramic membranes retain large organics such as bovine serum albumin (BSA). Fenton processes disintegrate nonretained MPs such as methylene blue (MB) and bisphenol A (BPA) that penetrate through the membrane. The efficiency of the suggested approach is high. Single-layered ultrafiltration membrane retains more than 96% BSA and degrades 40–50% of MB and BPA. The degree of degradation depends on both the impregnated metal oxide and the concentration of hydrogen peroxide. Vanadium-based catalysts retain more than 90% MPs but leach into permeate. Ferric oxides were the only stable catalysts that performed better in membranes than when impregnated on α-Al2O3 pellets. A combined retention–degradation can be optimized to result in superior degree of retention. Catalytic ceramic membranes can retain large organic molecules and decompose MPs simultaneously. Three parameters affect the process efficiency: the dynamics of the influent fluid, the catalyst dose and the contact time.

Graphic abstract



中文翻译:

使用浸渍陶瓷保留有机物并降解城市废水中的微污染物

摘要

农药,个人护理产品,工业化学品经常污染地表和地下水源。这些微量污染物(MPs)具有微量浓度和低分子量,很容易穿透处理系统,对饮用水使用者构成真正的健康威胁。水处理厂缺少专用的MP保留处理技术会导致MP污染水的不断消耗。如果保留其他较大的有机物部分,高级氧化过程(尤其是Fenton反应)可以成功降解MP。在这里,我们建议一种新颖的结合两阶段保留-降解方法。陶瓷膜保留了较大的有机物,例如牛血清白蛋白(BSA)。Fenton工艺会分解未渗透的MP,例如穿透膜的亚甲基蓝(MB)和双酚A(BPA)。建议的方法的效率很高。单层超滤膜可保留96%以上的BSA,并降解40-50%的MB和BPA。降解程度取决于浸渍的金属氧化物和过氧化氢的浓度。钒基催化剂保留了90%以上的MP,但会渗入渗透液中。三氧化二铁是唯一稳定的,在膜中比在α-Al中浸渍时性能更好的催化剂 降解程度取决于浸渍的金属氧化物和过氧化氢的浓度。钒基催化剂保留了90%以上的MP,但会渗入渗透液中。三氧化二铁是唯一稳定的,在膜中比在α-Al中浸渍时性能更好的催化剂 降解程度取决于浸渍的金属氧化物和过氧化氢的浓度。钒基催化剂保留了90%以上的MP,但会渗入渗透液中。三氧化二铁是唯一稳定的,在膜中比在α-Al中浸渍时性能更好的催化剂2 O 3粒。可以优化组合的保留时间-降低时间,以实现更高的保留度。催化陶瓷膜可以保留较大的有机分子并同时分解MP。三个参数影响过程效率:进水的动力学,催化剂剂量和接触时间。

图形摘要

更新日期:2020-04-20
down
wechat
bug